Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste

Cement paste is the most common construction material being used in the construction industry. Nanomaterials are the hottest topic worldwide, which affect the mechanical properties of construction materials such as cement paste. Cement pastes containing carbon nanotubes (CNTs) are piezoresistive int...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nzar Shakr Piro, Ahmed Salih Mohammed, Samir Mustafa Hamad
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ebd2f857a0bc4a76a9f3a8e0c1b28e09
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ebd2f857a0bc4a76a9f3a8e0c1b28e09
record_format dspace
spelling oai:doaj.org-article:ebd2f857a0bc4a76a9f3a8e0c1b28e092021-11-25T19:01:57ZMultiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste10.3390/su1322125442071-1050https://doaj.org/article/ebd2f857a0bc4a76a9f3a8e0c1b28e092021-11-01T00:00:00Zhttps://www.mdpi.com/2071-1050/13/22/12544https://doaj.org/toc/2071-1050Cement paste is the most common construction material being used in the construction industry. Nanomaterials are the hottest topic worldwide, which affect the mechanical properties of construction materials such as cement paste. Cement pastes containing carbon nanotubes (CNTs) are piezoresistive intelligent materials. The electrical resistivity of cementitious composites varies with the stress conditions under static and dynamic loads as carbon nanotubes are added to the cement paste. In cement paste, electrical resistivity is one of the most critical criteria for structural health control. Therefore, it is essential to develop a reliable mathematical model for predicting electrical resistivity. In this study, four different models—including the nonlinear regression model (NLR), linear regression model (LR), multilinear regression model (MLR), and artificial neural network model (ANN)—were proposed to predict the electrical resistivity of cement paste modified with carbon nanotube. Furthermore, the correlation between the compressive strength of cement paste and the electrical resistivity model has also been proposed in this study and compared with models in the literature. In this respect, 116 data points were gathered and examined to develop the models, and 56 data points were collected for the proposed correlation model. Most critical parameters influencing the electrical resistivity of cement paste were considered during the modeling process—i.e., water to cement ratio ranged from 0.2 to 0.485, carbon nanotube percentage varied from 0 to 1.5%, and curing time ranged from 1 to 180 days. The electrical resistivity of cement paste with a very large number ranging from 0.798–1252.23 Ω.m was reported in this study. Furthermore, various statistical assessments such as coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), scatter index (SI), and OBJ were used to investigate the performance of different models. Based on statistical assessments—such as SI, OBJ, and R2—the output results concluded that the artificial neural network ANN model performed better at predicting electrical resistivity for cement paste than the LR, NLR, and MLR models. In addition, the proposed correlation model gives better performance based on R2, RMSE, MAE, and SI for predicting compressive strength as a function of electrical resistivity compared to the models proposed in the literature.Nzar Shakr PiroAhmed Salih MohammedSamir Mustafa HamadMDPI AGarticlecarbon nanotubecuring timeelectrical resistivitymodelingsensitivityEnvironmental effects of industries and plantsTD194-195Renewable energy sourcesTJ807-830Environmental sciencesGE1-350ENSustainability, Vol 13, Iss 12544, p 12544 (2021)
institution DOAJ
collection DOAJ
language EN
topic carbon nanotube
curing time
electrical resistivity
modeling
sensitivity
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences
GE1-350
spellingShingle carbon nanotube
curing time
electrical resistivity
modeling
sensitivity
Environmental effects of industries and plants
TD194-195
Renewable energy sources
TJ807-830
Environmental sciences
GE1-350
Nzar Shakr Piro
Ahmed Salih Mohammed
Samir Mustafa Hamad
Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste
description Cement paste is the most common construction material being used in the construction industry. Nanomaterials are the hottest topic worldwide, which affect the mechanical properties of construction materials such as cement paste. Cement pastes containing carbon nanotubes (CNTs) are piezoresistive intelligent materials. The electrical resistivity of cementitious composites varies with the stress conditions under static and dynamic loads as carbon nanotubes are added to the cement paste. In cement paste, electrical resistivity is one of the most critical criteria for structural health control. Therefore, it is essential to develop a reliable mathematical model for predicting electrical resistivity. In this study, four different models—including the nonlinear regression model (NLR), linear regression model (LR), multilinear regression model (MLR), and artificial neural network model (ANN)—were proposed to predict the electrical resistivity of cement paste modified with carbon nanotube. Furthermore, the correlation between the compressive strength of cement paste and the electrical resistivity model has also been proposed in this study and compared with models in the literature. In this respect, 116 data points were gathered and examined to develop the models, and 56 data points were collected for the proposed correlation model. Most critical parameters influencing the electrical resistivity of cement paste were considered during the modeling process—i.e., water to cement ratio ranged from 0.2 to 0.485, carbon nanotube percentage varied from 0 to 1.5%, and curing time ranged from 1 to 180 days. The electrical resistivity of cement paste with a very large number ranging from 0.798–1252.23 Ω.m was reported in this study. Furthermore, various statistical assessments such as coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), scatter index (SI), and OBJ were used to investigate the performance of different models. Based on statistical assessments—such as SI, OBJ, and R2—the output results concluded that the artificial neural network ANN model performed better at predicting electrical resistivity for cement paste than the LR, NLR, and MLR models. In addition, the proposed correlation model gives better performance based on R2, RMSE, MAE, and SI for predicting compressive strength as a function of electrical resistivity compared to the models proposed in the literature.
format article
author Nzar Shakr Piro
Ahmed Salih Mohammed
Samir Mustafa Hamad
author_facet Nzar Shakr Piro
Ahmed Salih Mohammed
Samir Mustafa Hamad
author_sort Nzar Shakr Piro
title Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste
title_short Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste
title_full Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste
title_fullStr Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste
title_full_unstemmed Multiple Analytical Models to Evaluate the Impact of Carbon Nanotubes on the Electrical Resistivity and Compressive Strength of the Cement Paste
title_sort multiple analytical models to evaluate the impact of carbon nanotubes on the electrical resistivity and compressive strength of the cement paste
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/ebd2f857a0bc4a76a9f3a8e0c1b28e09
work_keys_str_mv AT nzarshakrpiro multipleanalyticalmodelstoevaluatetheimpactofcarbonnanotubesontheelectricalresistivityandcompressivestrengthofthecementpaste
AT ahmedsalihmohammed multipleanalyticalmodelstoevaluatetheimpactofcarbonnanotubesontheelectricalresistivityandcompressivestrengthofthecementpaste
AT samirmustafahamad multipleanalyticalmodelstoevaluatetheimpactofcarbonnanotubesontheelectricalresistivityandcompressivestrengthofthecementpaste
_version_ 1718410438553632768