Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks...
Enregistré dans:
Auteurs principaux: | Yang Li, Chengxin Zhang, Eric W Bell, Wei Zheng, Xiaogen Zhou, Dong-Jun Yu, Yang Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ebd691bba94f4b35990eb6e0cb86a802 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions
par: S. M. Mortuza, et autres
Publié: (2021) -
Deducing the presence of proteins and proteoforms in quantitative proteomics
par: Casimir Bamberger, et autres
Publié: (2018) -
Radar signal recognition based on triplet convolutional neural network
par: Lutao Liu, et autres
Publié: (2021) -
The role of recombination for the coevolutionary dynamics of HIV and the immune response.
par: Rafal Mostowy, et autres
Publié: (2011) -
The Coevolutionary Process of Maritime Management of Shipping Industry in the Context of the COVID-19 Pandemic
par: Yan Zhang, et autres
Publié: (2021)