Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks...
Guardado en:
Autores principales: | Yang Li, Chengxin Zhang, Eric W Bell, Wei Zheng, Xiaogen Zhou, Dong-Jun Yu, Yang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ebd691bba94f4b35990eb6e0cb86a802 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions
por: S. M. Mortuza, et al.
Publicado: (2021) -
Deducing the presence of proteins and proteoforms in quantitative proteomics
por: Casimir Bamberger, et al.
Publicado: (2018) -
Radar signal recognition based on triplet convolutional neural network
por: Lutao Liu, et al.
Publicado: (2021) -
The role of recombination for the coevolutionary dynamics of HIV and the immune response.
por: Rafal Mostowy, et al.
Publicado: (2011) -
The Coevolutionary Process of Maritime Management of Shipping Industry in the Context of the COVID-19 Pandemic
por: Yan Zhang, et al.
Publicado: (2021)