In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects
Jyoti V Kumbhar,1 Sachin H Jadhav,2 Dhananjay S Bodas,1 Amruta Barhanpurkar-Naik,3 Mohan R Wani,3 Kishore M Paknikar,1 Jyutika M Rajwade1 1Nanobioscience, 2Animal Sciences Division, Agharkar Research Institute, 3National Centre for Cell Science, Savitribai Phule Pune University, Pune, India Abstra...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ebe660547027403f8f6bcbf81d8ea386 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ebe660547027403f8f6bcbf81d8ea386 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ebe660547027403f8f6bcbf81d8ea3862021-12-02T00:07:18ZIn vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects1178-2013https://doaj.org/article/ebe660547027403f8f6bcbf81d8ea3862017-09-01T00:00:00Zhttps://www.dovepress.com/in-vitro-and-in-vivo-studies-of-a-novel-bacterial-cellulose-based-acel-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jyoti V Kumbhar,1 Sachin H Jadhav,2 Dhananjay S Bodas,1 Amruta Barhanpurkar-Naik,3 Mohan R Wani,3 Kishore M Paknikar,1 Jyutika M Rajwade1 1Nanobioscience, 2Animal Sciences Division, Agharkar Research Institute, 3National Centre for Cell Science, Savitribai Phule Pune University, Pune, India Abstract: Bacterial cellulose (BC) is a naturally occurring nanofibrous biomaterial which exhibits unique physical properties and is amenable to chemical modifications. To explore whether this versatile material can be used in the treatment of osteochondral defects (OCD), we developed and characterized novel BC-based nanocomposite scaffolds, for example, BC-hydroxyapatite (BC-HA) and BC-glycosaminoglycans (BC-GAG) that mimic bone and cartilage, respectively. In vitro biocompatibility of BC-HA and BC-GAG scaffolds was established using osteosarcoma cells, human articular chondrocytes, and human adipose-derived mesenchymal stem cells. On subcutaneous implantation, the scaffolds allowed tissue ingrowth and induced no adverse immunological reactions suggesting excellent in vivo biocompatibility. Implantation of acellular bilayered scaffolds in OCD created in rat knees induced progressive regeneration of cartilage tissue, deposition of extracellular matrix, and regeneration of subchondral bone by the host cells. The results of micro-CT revealed that bone mineral density and ratio of bone volume to tissue volume were significantly higher in animals receiving bilayered scaffold as compared to the control animals. To the best of our knowledge, this study proves for the first time, the functional performance of acellular BC-based bilayered scaffolds. Thus, this strategy has great potential for clinical translation and can be used in repair of OCD. Keywords: bacterial cellulose-hydroxyapatite, bacterial cellulose-glycosaminoglycan, osteochondral defect, stem cell differentiation, acellular bilayer scaffold Kumbhar JVJadhav SHBodas DSBarhanpurkar-Naik AWani MRPaknikar KMRajwade JMDove Medical PressarticleBacterial cellulose-hydroxyapatiteBacterial cellulose-glycosaminoglycanosteochondral defectstem cell differentiationacellular bilayer scaffoldMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 6437-6459 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Bacterial cellulose-hydroxyapatite Bacterial cellulose-glycosaminoglycan osteochondral defect stem cell differentiation acellular bilayer scaffold Medicine (General) R5-920 |
spellingShingle |
Bacterial cellulose-hydroxyapatite Bacterial cellulose-glycosaminoglycan osteochondral defect stem cell differentiation acellular bilayer scaffold Medicine (General) R5-920 Kumbhar JV Jadhav SH Bodas DS Barhanpurkar-Naik A Wani MR Paknikar KM Rajwade JM In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
description |
Jyoti V Kumbhar,1 Sachin H Jadhav,2 Dhananjay S Bodas,1 Amruta Barhanpurkar-Naik,3 Mohan R Wani,3 Kishore M Paknikar,1 Jyutika M Rajwade1 1Nanobioscience, 2Animal Sciences Division, Agharkar Research Institute, 3National Centre for Cell Science, Savitribai Phule Pune University, Pune, India Abstract: Bacterial cellulose (BC) is a naturally occurring nanofibrous biomaterial which exhibits unique physical properties and is amenable to chemical modifications. To explore whether this versatile material can be used in the treatment of osteochondral defects (OCD), we developed and characterized novel BC-based nanocomposite scaffolds, for example, BC-hydroxyapatite (BC-HA) and BC-glycosaminoglycans (BC-GAG) that mimic bone and cartilage, respectively. In vitro biocompatibility of BC-HA and BC-GAG scaffolds was established using osteosarcoma cells, human articular chondrocytes, and human adipose-derived mesenchymal stem cells. On subcutaneous implantation, the scaffolds allowed tissue ingrowth and induced no adverse immunological reactions suggesting excellent in vivo biocompatibility. Implantation of acellular bilayered scaffolds in OCD created in rat knees induced progressive regeneration of cartilage tissue, deposition of extracellular matrix, and regeneration of subchondral bone by the host cells. The results of micro-CT revealed that bone mineral density and ratio of bone volume to tissue volume were significantly higher in animals receiving bilayered scaffold as compared to the control animals. To the best of our knowledge, this study proves for the first time, the functional performance of acellular BC-based bilayered scaffolds. Thus, this strategy has great potential for clinical translation and can be used in repair of OCD. Keywords: bacterial cellulose-hydroxyapatite, bacterial cellulose-glycosaminoglycan, osteochondral defect, stem cell differentiation, acellular bilayer scaffold |
format |
article |
author |
Kumbhar JV Jadhav SH Bodas DS Barhanpurkar-Naik A Wani MR Paknikar KM Rajwade JM |
author_facet |
Kumbhar JV Jadhav SH Bodas DS Barhanpurkar-Naik A Wani MR Paknikar KM Rajwade JM |
author_sort |
Kumbhar JV |
title |
In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
title_short |
In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
title_full |
In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
title_fullStr |
In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
title_full_unstemmed |
In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
title_sort |
in vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects |
publisher |
Dove Medical Press |
publishDate |
2017 |
url |
https://doaj.org/article/ebe660547027403f8f6bcbf81d8ea386 |
work_keys_str_mv |
AT kumbharjv invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects AT jadhavsh invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects AT bodasds invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects AT barhanpurkarnaika invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects AT wanimr invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects AT paknikarkm invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects AT rajwadejm invitroandinvivostudiesofanovelbacterialcellulosebasedacellularbilayernanocompositescaffoldfortherepairofosteochondraldefects |
_version_ |
1718403959380508672 |