Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy
Abstract Deep learning has emerged as a technique of choice for rapid feature extraction across imaging disciplines, allowing rapid conversion of the data streams to spatial or spatiotemporal arrays of features of interest. However, applications of deep learning in experimental domains are often lim...
Guardado en:
Autores principales: | Ayana Ghosh, Bobby G. Sumpter, Ondrej Dyck, Sergei V. Kalinin, Maxim Ziatdinov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec0afdf0559a42ec8e0314cf026fbec6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
por: Christopher T. Nelson, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021)