Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization

Aims: Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods: OA animal model...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hua Zhang, Jie Li, Xiaobing Xiang, Bengen Zhou, Changqing Zhao, Qiushi Wei, Youqiang Sun, Jianfa Chen, Boyong Lai, Zequan Luo, Aihua Li
Formato: article
Lenguaje:EN
Publicado: The British Editorial Society of Bone & Joint Surgery 2021
Materias:
Acceso en línea:https://doaj.org/article/ec12cef9b5944ccfb9b167cbd83357f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ec12cef9b5944ccfb9b167cbd83357f4
record_format dspace
spelling oai:doaj.org-article:ec12cef9b5944ccfb9b167cbd83357f42021-12-01T18:46:59ZTert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization2046-375810.1302/2046-3758.1011.BJR-2020-0242.R4https://doaj.org/article/ec12cef9b5944ccfb9b167cbd83357f42021-11-01T00:00:00Zhttps://online.boneandjoint.org.uk/doi/epdf/10.1302/2046-3758.1011.BJR-2020-0242.R4https://doaj.org/toc/2046-3758Aims: Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods: OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results: Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion: Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713.Hua ZhangJie LiXiaobing XiangBengen ZhouChangqing ZhaoQiushi WeiYouqiang SunJianfa ChenBoyong LaiZequan LuoAihua LiThe British Editorial Society of Bone & Joint Surgeryarticletbhqosteoarthritisapoptosisosteoarthritis (oa)chondrocytesmacrophagesinterleukin 6apoptosisinflammationinterleukin 1 betawestern blotblooddestabilization of the medial meniscus (dmm)Diseases of the musculoskeletal systemRC925-935ENBone & Joint Research, Vol 10, Iss 11, Pp 704-713 (2021)
institution DOAJ
collection DOAJ
language EN
topic tbhq
osteoarthritis
apoptosis
osteoarthritis (oa)
chondrocytes
macrophages
interleukin 6
apoptosis
inflammation
interleukin 1 beta
western blot
blood
destabilization of the medial meniscus (dmm)
Diseases of the musculoskeletal system
RC925-935
spellingShingle tbhq
osteoarthritis
apoptosis
osteoarthritis (oa)
chondrocytes
macrophages
interleukin 6
apoptosis
inflammation
interleukin 1 beta
western blot
blood
destabilization of the medial meniscus (dmm)
Diseases of the musculoskeletal system
RC925-935
Hua Zhang
Jie Li
Xiaobing Xiang
Bengen Zhou
Changqing Zhao
Qiushi Wei
Youqiang Sun
Jianfa Chen
Boyong Lai
Zequan Luo
Aihua Li
Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
description Aims: Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA. Methods: OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot. Results: Tert-butylhydroquinone significantly attenuated cartilage destruction in DMM-induced mice in vivo. It demonstrated clear evidence of inhibiting IL-1β-induced chondrocyte apoptosis, inflammation, and differentiation defect in vitro. Meanwhile, tBHQ inhibited LPS-induced activation of NF-κB and MAPK signalling pathways, and also inhibited LPS-induced reactive oxygen species production and macrophages repolarization in vitro. Conclusion: Taken together, tBHQ might be a potential therapeutic strategy for protecting against OA development. Cite this article: Bone Joint Res 2021;10(11):704–713.
format article
author Hua Zhang
Jie Li
Xiaobing Xiang
Bengen Zhou
Changqing Zhao
Qiushi Wei
Youqiang Sun
Jianfa Chen
Boyong Lai
Zequan Luo
Aihua Li
author_facet Hua Zhang
Jie Li
Xiaobing Xiang
Bengen Zhou
Changqing Zhao
Qiushi Wei
Youqiang Sun
Jianfa Chen
Boyong Lai
Zequan Luo
Aihua Li
author_sort Hua Zhang
title Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
title_short Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
title_full Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
title_fullStr Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
title_full_unstemmed Tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
title_sort tert-butylhydroquinone attenuates osteoarthritis by protecting chondrocytes and inhibiting macrophage polarization
publisher The British Editorial Society of Bone & Joint Surgery
publishDate 2021
url https://doaj.org/article/ec12cef9b5944ccfb9b167cbd83357f4
work_keys_str_mv AT huazhang tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT jieli tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT xiaobingxiang tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT bengenzhou tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT changqingzhao tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT qiushiwei tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT youqiangsun tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT jianfachen tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT boyonglai tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT zequanluo tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
AT aihuali tertbutylhydroquinoneattenuatesosteoarthritisbyprotectingchondrocytesandinhibitingmacrophagepolarization
_version_ 1718404727191896064