Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria).
<h4>Background</h4>The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec1801e3ab8e4c16a1ef644b5bcb255e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ec1801e3ab8e4c16a1ef644b5bcb255e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ec1801e3ab8e4c16a1ef644b5bcb255e2021-11-18T07:51:08ZBone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria).1932-620310.1371/journal.pone.0059146https://doaj.org/article/ec1801e3ab8e4c16a1ef644b5bcb255e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23565143/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.<h4>Methodology/principal findings</h4>We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.<h4>Conclusions/significance</h4>In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.Shoji HayashiAlexandra HoussayeYasuhisa NakajimaKentaro ChibaTatsuro AndoHiroshi SawamuraNorihisa InuzukaNaotomo KanekoTomohiro OsakiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 4, p e59146 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Shoji Hayashi Alexandra Houssaye Yasuhisa Nakajima Kentaro Chiba Tatsuro Ando Hiroshi Sawamura Norihisa Inuzuka Naotomo Kaneko Tomohiro Osaki Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). |
description |
<h4>Background</h4>The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.<h4>Methodology/principal findings</h4>We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.<h4>Conclusions/significance</h4>In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history. |
format |
article |
author |
Shoji Hayashi Alexandra Houssaye Yasuhisa Nakajima Kentaro Chiba Tatsuro Ando Hiroshi Sawamura Norihisa Inuzuka Naotomo Kaneko Tomohiro Osaki |
author_facet |
Shoji Hayashi Alexandra Houssaye Yasuhisa Nakajima Kentaro Chiba Tatsuro Ando Hiroshi Sawamura Norihisa Inuzuka Naotomo Kaneko Tomohiro Osaki |
author_sort |
Shoji Hayashi |
title |
Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). |
title_short |
Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). |
title_full |
Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). |
title_fullStr |
Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). |
title_full_unstemmed |
Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). |
title_sort |
bone inner structure suggests increasing aquatic adaptations in desmostylia (mammalia, afrotheria). |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/ec1801e3ab8e4c16a1ef644b5bcb255e |
work_keys_str_mv |
AT shojihayashi boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT alexandrahoussaye boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT yasuhisanakajima boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT kentarochiba boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT tatsuroando boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT hiroshisawamura boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT norihisainuzuka boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT naotomokaneko boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria AT tomohiroosaki boneinnerstructuresuggestsincreasingaquaticadaptationsindesmostyliamammaliaafrotheria |
_version_ |
1718422885897338880 |