A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
Recently, Electroencephalography (EEG) motor imagery (MI) signals have received increasing attention because it became possible to use these signals to encode a person’s intention to perform an action. Researchers have used MI signals to help people with partial or total paralysis, control devices s...
Guardado en:
Autores principales: | Amira Echtioui, Ayoub Mlaouah, Wassim Zouch, Mohamed Ghorbel, Chokri Mhiri, Habib Hamam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec2125dd63e1406bb67bcc7ef76aac58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Electroencephalogram-Based Motor Imagery Classification Using Deep Residual Convolutional Networks
por: Jing-Shan Huang, et al.
Publicado: (2021) -
FPGA Realization of Two-DimensionalWavelet and Wavelet Packet Transform
por: Mohammed N. Al-Turfi, et al.
Publicado: (2005) -
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
por: Jothi Letchumy Mahendra Kumar, et al.
Publicado: (2021) -
EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
por: Chamandeep Kaur, et al.
Publicado: (2021) -
Control de movimiento robótico con detección cognitiva y facial mediante Emotiv EEG
por: Monge Lay,Sebastián, et al.
Publicado: (2015)