Active slip control of a vehicle using fuzzy control and active suspension
This paper presents an active slip control system (ASCS) for a four-wheel drive electric vehicle (EV) using an active suspension of the vehicle. The integrated control mechanism is designed using a combination of a fuzzy controller and a nonlinear back-stepping controller to control the slip of the...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec26c5e3462241dbb617827ca005efec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ec26c5e3462241dbb617827ca005efec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ec26c5e3462241dbb617827ca005efec2021-11-04T15:00:41ZActive slip control of a vehicle using fuzzy control and active suspension0005-11441848-338010.1080/00051144.2021.1972399https://doaj.org/article/ec26c5e3462241dbb617827ca005efec2021-10-01T00:00:00Zhttp://dx.doi.org/10.1080/00051144.2021.1972399https://doaj.org/toc/0005-1144https://doaj.org/toc/1848-3380This paper presents an active slip control system (ASCS) for a four-wheel drive electric vehicle (EV) using an active suspension of the vehicle. The integrated control mechanism is designed using a combination of a fuzzy controller and a nonlinear back-stepping controller to control the slip of the individual wheels with the help of the active suspension of the vehicle. In this research, the presented control mechanism is implemented in two steps. In the first step, based on the friction coefficient calculated from a nonlinear tire model, the fuzzy controller will generate the vehicle roll and pitch angles required to reduce the slipping of the individual wheels by changing the vertical load of the individual wheel. In the second step, a nonlinear back-stepping controller is used to track the required roll and pitch angles using the active suspension of the vehicle. A linear seven degree of freedom (DOF) vertical mathematical model is used for the design of the nonlinear back-stepping controller, while the rules of the fuzzy controller are interpreted from the friction coefficients of the tyre model. The performance of the presented control mechanism is verified using a 14-DOF nonlinear model with nonlinear tyre dynamics. The simulations using a nonlinear vehicle model show that the presented controller can successfully improve vehicle stability by reducing the slipping of the individual wheel.Muhammad Arshad KhanSaima HaroonEjaz AhmadBashir HayatIljoong YounTaylor & Francis Grouparticlefuzzy controlactive slip controlnonlinear controlactive suspensionelectric vehicleControl engineering systems. Automatic machinery (General)TJ212-225AutomationT59.5ENAutomatika, Vol 62, Iss 3-4, Pp 386-396 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fuzzy control active slip control nonlinear control active suspension electric vehicle Control engineering systems. Automatic machinery (General) TJ212-225 Automation T59.5 |
spellingShingle |
fuzzy control active slip control nonlinear control active suspension electric vehicle Control engineering systems. Automatic machinery (General) TJ212-225 Automation T59.5 Muhammad Arshad Khan Saima Haroon Ejaz Ahmad Bashir Hayat Iljoong Youn Active slip control of a vehicle using fuzzy control and active suspension |
description |
This paper presents an active slip control system (ASCS) for a four-wheel drive electric vehicle (EV) using an active suspension of the vehicle. The integrated control mechanism is designed using a combination of a fuzzy controller and a nonlinear back-stepping controller to control the slip of the individual wheels with the help of the active suspension of the vehicle. In this research, the presented control mechanism is implemented in two steps. In the first step, based on the friction coefficient calculated from a nonlinear tire model, the fuzzy controller will generate the vehicle roll and pitch angles required to reduce the slipping of the individual wheels by changing the vertical load of the individual wheel. In the second step, a nonlinear back-stepping controller is used to track the required roll and pitch angles using the active suspension of the vehicle. A linear seven degree of freedom (DOF) vertical mathematical model is used for the design of the nonlinear back-stepping controller, while the rules of the fuzzy controller are interpreted from the friction coefficients of the tyre model. The performance of the presented control mechanism is verified using a 14-DOF nonlinear model with nonlinear tyre dynamics. The simulations using a nonlinear vehicle model show that the presented controller can successfully improve vehicle stability by reducing the slipping of the individual wheel. |
format |
article |
author |
Muhammad Arshad Khan Saima Haroon Ejaz Ahmad Bashir Hayat Iljoong Youn |
author_facet |
Muhammad Arshad Khan Saima Haroon Ejaz Ahmad Bashir Hayat Iljoong Youn |
author_sort |
Muhammad Arshad Khan |
title |
Active slip control of a vehicle using fuzzy control and active suspension |
title_short |
Active slip control of a vehicle using fuzzy control and active suspension |
title_full |
Active slip control of a vehicle using fuzzy control and active suspension |
title_fullStr |
Active slip control of a vehicle using fuzzy control and active suspension |
title_full_unstemmed |
Active slip control of a vehicle using fuzzy control and active suspension |
title_sort |
active slip control of a vehicle using fuzzy control and active suspension |
publisher |
Taylor & Francis Group |
publishDate |
2021 |
url |
https://doaj.org/article/ec26c5e3462241dbb617827ca005efec |
work_keys_str_mv |
AT muhammadarshadkhan activeslipcontrolofavehicleusingfuzzycontrolandactivesuspension AT saimaharoon activeslipcontrolofavehicleusingfuzzycontrolandactivesuspension AT ejazahmad activeslipcontrolofavehicleusingfuzzycontrolandactivesuspension AT bashirhayat activeslipcontrolofavehicleusingfuzzycontrolandactivesuspension AT iljoongyoun activeslipcontrolofavehicleusingfuzzycontrolandactivesuspension |
_version_ |
1718444807686193152 |