Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity

Jiulong Li,1 Bing Tian,1 Tao Li,1 Shang Dai,1 Yulan Weng,1 Jianjiang Lu,2 Xiaolin Xu,2 Ye Jin,1 Renjiang Pang,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Ha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Li JL, Tian B, Li T, Dai S, Weng YL, Lu JJ, Xu XL, Jin Y, Pang RJ, Hua YJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/ec3b40c0c3164f798dff22ca70e13ace
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ec3b40c0c3164f798dff22ca70e13ace
record_format dspace
spelling oai:doaj.org-article:ec3b40c0c3164f798dff22ca70e13ace2021-12-02T02:26:26ZBiosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity1178-2013https://doaj.org/article/ec3b40c0c3164f798dff22ca70e13ace2018-03-01T00:00:00Zhttps://www.dovepress.com/biosynthesis-of-au-ag-and-au-ag-bimetallic-nanoparticles-using-protein-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jiulong Li,1 Bing Tian,1 Tao Li,1 Shang Dai,1 Yulan Weng,1 Jianjiang Lu,2 Xiaolin Xu,2 Ye Jin,1 Renjiang Pang,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People’s Republic of China; 2Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People’s Republic of China Background: Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties.Methods: In this study, we investigated syntheses of Au, Ag and Au–Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analyzed by various spectroscopy techniques.Results: The D. radiodurans protein extract-mediated silver nanoparticles (Drp-AgNPs) were preferably monodispersed and stably distributed compared to D. radiodurans protein extract-mediated gold nanoparticles (Drp-AuNPs). Drp-AgNPs and Drp-AuNPs exhibited spherical morphology with average sizes of 37.13±5.97 nm and 51.72±7.38 nm and zeta potential values of -18.31±1.39 mV and -15.17±1.24 mV at pH 7, respectively. The release efficiencies of Drp-AuNPs and Drp-AgNPs measured at 24 h were 3.99% and 18.20%, respectively. During the synthesis process, Au(III) was reduced to Au(I) and further to Au(0) and Ag(I) was reduced to Ag(0) by interactions with the hydroxyl, amine, carboxyl, phospho or sulfhydryl groups of proteins and subsequently stabilized by these groups. Some characteristics of Drp-AuNPs were different from those of Drp-AgNPs, which could be attributed to the interaction of the NPs with different binding groups of proteins. The Drp-AgNPs could be further formed into Au–Ag bimetallic NPs via galvanic replacement reaction. Drp-AuNPs and Au–Ag bimetallic NPs showed low cytotoxicity against MCF-10A cells due to the lower level of intracellular reactive oxygen species (ROS) generation than that of Drp-AgNPs.Conclusions: These results are crucial to understand the biosynthetic mechanism and properties of noble metallic NPs using the protein extracts of bacteria. The biocompatible Au or Au–Ag bimetallic NPs are applicable in biosensing, bioimaging and biomedicine. Keywords: extreme bacterium, green synthesis, noble metallic nanoparticles, reactive oxygen speciesLi JLTian BLi TDai SWeng YLLu JJXu XLJin YPang RJHua YJDove Medical Pressarticleextreme bacteriumgreen synthesisnoble metallic nanoparticlesreactive oxygen speciesMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 1411-1424 (2018)
institution DOAJ
collection DOAJ
language EN
topic extreme bacterium
green synthesis
noble metallic nanoparticles
reactive oxygen species
Medicine (General)
R5-920
spellingShingle extreme bacterium
green synthesis
noble metallic nanoparticles
reactive oxygen species
Medicine (General)
R5-920
Li JL
Tian B
Li T
Dai S
Weng YL
Lu JJ
Xu XL
Jin Y
Pang RJ
Hua YJ
Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
description Jiulong Li,1 Bing Tian,1 Tao Li,1 Shang Dai,1 Yulan Weng,1 Jianjiang Lu,2 Xiaolin Xu,2 Ye Jin,1 Renjiang Pang,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People’s Republic of China; 2Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People’s Republic of China Background: Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties.Methods: In this study, we investigated syntheses of Au, Ag and Au–Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analyzed by various spectroscopy techniques.Results: The D. radiodurans protein extract-mediated silver nanoparticles (Drp-AgNPs) were preferably monodispersed and stably distributed compared to D. radiodurans protein extract-mediated gold nanoparticles (Drp-AuNPs). Drp-AgNPs and Drp-AuNPs exhibited spherical morphology with average sizes of 37.13±5.97 nm and 51.72±7.38 nm and zeta potential values of -18.31±1.39 mV and -15.17±1.24 mV at pH 7, respectively. The release efficiencies of Drp-AuNPs and Drp-AgNPs measured at 24 h were 3.99% and 18.20%, respectively. During the synthesis process, Au(III) was reduced to Au(I) and further to Au(0) and Ag(I) was reduced to Ag(0) by interactions with the hydroxyl, amine, carboxyl, phospho or sulfhydryl groups of proteins and subsequently stabilized by these groups. Some characteristics of Drp-AuNPs were different from those of Drp-AgNPs, which could be attributed to the interaction of the NPs with different binding groups of proteins. The Drp-AgNPs could be further formed into Au–Ag bimetallic NPs via galvanic replacement reaction. Drp-AuNPs and Au–Ag bimetallic NPs showed low cytotoxicity against MCF-10A cells due to the lower level of intracellular reactive oxygen species (ROS) generation than that of Drp-AgNPs.Conclusions: These results are crucial to understand the biosynthetic mechanism and properties of noble metallic NPs using the protein extracts of bacteria. The biocompatible Au or Au–Ag bimetallic NPs are applicable in biosensing, bioimaging and biomedicine. Keywords: extreme bacterium, green synthesis, noble metallic nanoparticles, reactive oxygen species
format article
author Li JL
Tian B
Li T
Dai S
Weng YL
Lu JJ
Xu XL
Jin Y
Pang RJ
Hua YJ
author_facet Li JL
Tian B
Li T
Dai S
Weng YL
Lu JJ
Xu XL
Jin Y
Pang RJ
Hua YJ
author_sort Li JL
title Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
title_short Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
title_full Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
title_fullStr Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
title_full_unstemmed Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
title_sort biosynthesis of au, ag and au–ag bimetallic nanoparticles using protein extracts of deinococcus radiodurans and evaluation of their cytotoxicity
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/ec3b40c0c3164f798dff22ca70e13ace
work_keys_str_mv AT lijl biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT tianb biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT lit biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT dais biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT wengyl biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT lujj biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT xuxl biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT jiny biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT pangrj biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
AT huayj biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity
_version_ 1718402503720042496