Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity
Jiulong Li,1 Bing Tian,1 Tao Li,1 Shang Dai,1 Yulan Weng,1 Jianjiang Lu,2 Xiaolin Xu,2 Ye Jin,1 Renjiang Pang,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Ha...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec3b40c0c3164f798dff22ca70e13ace |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ec3b40c0c3164f798dff22ca70e13ace |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ec3b40c0c3164f798dff22ca70e13ace2021-12-02T02:26:26ZBiosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity1178-2013https://doaj.org/article/ec3b40c0c3164f798dff22ca70e13ace2018-03-01T00:00:00Zhttps://www.dovepress.com/biosynthesis-of-au-ag-and-au-ag-bimetallic-nanoparticles-using-protein-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jiulong Li,1 Bing Tian,1 Tao Li,1 Shang Dai,1 Yulan Weng,1 Jianjiang Lu,2 Xiaolin Xu,2 Ye Jin,1 Renjiang Pang,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People’s Republic of China; 2Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People’s Republic of China Background: Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties.Methods: In this study, we investigated syntheses of Au, Ag and Au–Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analyzed by various spectroscopy techniques.Results: The D. radiodurans protein extract-mediated silver nanoparticles (Drp-AgNPs) were preferably monodispersed and stably distributed compared to D. radiodurans protein extract-mediated gold nanoparticles (Drp-AuNPs). Drp-AgNPs and Drp-AuNPs exhibited spherical morphology with average sizes of 37.13±5.97 nm and 51.72±7.38 nm and zeta potential values of -18.31±1.39 mV and -15.17±1.24 mV at pH 7, respectively. The release efficiencies of Drp-AuNPs and Drp-AgNPs measured at 24 h were 3.99% and 18.20%, respectively. During the synthesis process, Au(III) was reduced to Au(I) and further to Au(0) and Ag(I) was reduced to Ag(0) by interactions with the hydroxyl, amine, carboxyl, phospho or sulfhydryl groups of proteins and subsequently stabilized by these groups. Some characteristics of Drp-AuNPs were different from those of Drp-AgNPs, which could be attributed to the interaction of the NPs with different binding groups of proteins. The Drp-AgNPs could be further formed into Au–Ag bimetallic NPs via galvanic replacement reaction. Drp-AuNPs and Au–Ag bimetallic NPs showed low cytotoxicity against MCF-10A cells due to the lower level of intracellular reactive oxygen species (ROS) generation than that of Drp-AgNPs.Conclusions: These results are crucial to understand the biosynthetic mechanism and properties of noble metallic NPs using the protein extracts of bacteria. The biocompatible Au or Au–Ag bimetallic NPs are applicable in biosensing, bioimaging and biomedicine. Keywords: extreme bacterium, green synthesis, noble metallic nanoparticles, reactive oxygen speciesLi JLTian BLi TDai SWeng YLLu JJXu XLJin YPang RJHua YJDove Medical Pressarticleextreme bacteriumgreen synthesisnoble metallic nanoparticlesreactive oxygen speciesMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 1411-1424 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
extreme bacterium green synthesis noble metallic nanoparticles reactive oxygen species Medicine (General) R5-920 |
spellingShingle |
extreme bacterium green synthesis noble metallic nanoparticles reactive oxygen species Medicine (General) R5-920 Li JL Tian B Li T Dai S Weng YL Lu JJ Xu XL Jin Y Pang RJ Hua YJ Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity |
description |
Jiulong Li,1 Bing Tian,1 Tao Li,1 Shang Dai,1 Yulan Weng,1 Jianjiang Lu,2 Xiaolin Xu,2 Ye Jin,1 Renjiang Pang,1 Yuejin Hua1 1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, People’s Republic of China; 2Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, People’s Republic of China Background: Biosynthesis of noble metallic nanoparticles (NPs) has attracted significant interest due to their environmental friendly and biocompatible properties.Methods: In this study, we investigated syntheses of Au, Ag and Au–Ag bimetallic NPs using protein extracts of Deinococcus radiodurans, which demonstrated powerful metal-reducing ability. The obtained NPs were characterized and analyzed by various spectroscopy techniques.Results: The D. radiodurans protein extract-mediated silver nanoparticles (Drp-AgNPs) were preferably monodispersed and stably distributed compared to D. radiodurans protein extract-mediated gold nanoparticles (Drp-AuNPs). Drp-AgNPs and Drp-AuNPs exhibited spherical morphology with average sizes of 37.13±5.97 nm and 51.72±7.38 nm and zeta potential values of -18.31±1.39 mV and -15.17±1.24 mV at pH 7, respectively. The release efficiencies of Drp-AuNPs and Drp-AgNPs measured at 24 h were 3.99% and 18.20%, respectively. During the synthesis process, Au(III) was reduced to Au(I) and further to Au(0) and Ag(I) was reduced to Ag(0) by interactions with the hydroxyl, amine, carboxyl, phospho or sulfhydryl groups of proteins and subsequently stabilized by these groups. Some characteristics of Drp-AuNPs were different from those of Drp-AgNPs, which could be attributed to the interaction of the NPs with different binding groups of proteins. The Drp-AgNPs could be further formed into Au–Ag bimetallic NPs via galvanic replacement reaction. Drp-AuNPs and Au–Ag bimetallic NPs showed low cytotoxicity against MCF-10A cells due to the lower level of intracellular reactive oxygen species (ROS) generation than that of Drp-AgNPs.Conclusions: These results are crucial to understand the biosynthetic mechanism and properties of noble metallic NPs using the protein extracts of bacteria. The biocompatible Au or Au–Ag bimetallic NPs are applicable in biosensing, bioimaging and biomedicine. Keywords: extreme bacterium, green synthesis, noble metallic nanoparticles, reactive oxygen species |
format |
article |
author |
Li JL Tian B Li T Dai S Weng YL Lu JJ Xu XL Jin Y Pang RJ Hua YJ |
author_facet |
Li JL Tian B Li T Dai S Weng YL Lu JJ Xu XL Jin Y Pang RJ Hua YJ |
author_sort |
Li JL |
title |
Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity |
title_short |
Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity |
title_full |
Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity |
title_fullStr |
Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity |
title_full_unstemmed |
Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity |
title_sort |
biosynthesis of au, ag and au–ag bimetallic nanoparticles using protein extracts of deinococcus radiodurans and evaluation of their cytotoxicity |
publisher |
Dove Medical Press |
publishDate |
2018 |
url |
https://doaj.org/article/ec3b40c0c3164f798dff22ca70e13ace |
work_keys_str_mv |
AT lijl biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT tianb biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT lit biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT dais biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT wengyl biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT lujj biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT xuxl biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT jiny biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT pangrj biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity AT huayj biosynthesisofauagandaundashagbimetallicnanoparticlesusingproteinextractsofdeinococcusradioduransandevaluationoftheircytotoxicity |
_version_ |
1718402503720042496 |