A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs
Abstract Fluorescein angiography (FA) is a procedure used to image the vascular structure of the retina and requires the insertion of an exogenous dye with potential adverse side effects. Currently, there is only one alternative non-invasive system based on Optical coherence tomography (OCT) technol...
Guardado en:
Autores principales: | Alireza Tavakkoli, Sharif Amit Kamran, Khondker Fariha Hossain, Stewart Lee Zuckerbrod |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec6869771f0945e7be893d40e0077b27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting sex from retinal fundus photographs using automated deep learning
por: Edward Korot, et al.
Publicado: (2021) -
Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks
por: Ling-Ping Cen, et al.
Publicado: (2021) -
Identifying Peripheral Neuropathy in Colour Fundus Photographs Based on Deep Learning
por: Diego R. Cervera, et al.
Publicado: (2021) -
RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network
por: Yu Chen, et al.
Publicado: (2021) -
Quantification of retinal blood leakage in fundus fluorescein angiography in a retinal angiogenesis model
por: Cesar H. Comin, et al.
Publicado: (2021)