Protein Design with Deep Learning
Computational Protein Design (CPD) has produced impressive results for engineering new proteins, resulting in a wide variety of applications. In the past few years, various efforts have aimed at replacing or improving existing design methods using Deep Learning technology to leverage the amount of p...
Guardado en:
Autores principales: | Marianne Defresne, Sophie Barbe, Thomas Schiex |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ec6909658fea4b868fdc62fff2334617 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors
por: Unni Rohit, et al.
Publicado: (2021) -
Improving Protein Subcellular Location Classification by Incorporating Three-Dimensional Structure Information
por: Ge Wang, et al.
Publicado: (2021) -
Performance Analysis of Deep Neural Networks Using Computer Vision
por: Nidhi Sindhwani, et al.
Publicado: (2021) -
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
por: Martin G. Frasch, et al.
Publicado: (2021) -
Deep learning—a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
por: Jan Egger, et al.
Publicado: (2021)