Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease

Cation-coupled chloride cotransporters play a key role in generating the Cl– electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaini...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Valentina E. Yurinskaya, Alexey A. Vereninov
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/ec9a35e7c6bf44c989e0cb734ba8e77a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ec9a35e7c6bf44c989e0cb734ba8e77a
record_format dspace
spelling oai:doaj.org-article:ec9a35e7c6bf44c989e0cb734ba8e77a2021-11-16T05:15:55ZCation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease2296-634X10.3389/fcell.2021.736488https://doaj.org/article/ec9a35e7c6bf44c989e0cb734ba8e77a2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fcell.2021.736488/fullhttps://doaj.org/toc/2296-634XCation-coupled chloride cotransporters play a key role in generating the Cl– electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl– channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.Valentina E. YurinskayaAlexey A. VereninovFrontiers Media S.A.articlecell ion homeostasis computationcotransportersion channelssodium pumpcell volume regulationregulatory volume decreaseBiology (General)QH301-705.5ENFrontiers in Cell and Developmental Biology, Vol 9 (2021)
institution DOAJ
collection DOAJ
language EN
topic cell ion homeostasis computation
cotransporters
ion channels
sodium pump
cell volume regulation
regulatory volume decrease
Biology (General)
QH301-705.5
spellingShingle cell ion homeostasis computation
cotransporters
ion channels
sodium pump
cell volume regulation
regulatory volume decrease
Biology (General)
QH301-705.5
Valentina E. Yurinskaya
Alexey A. Vereninov
Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease
description Cation-coupled chloride cotransporters play a key role in generating the Cl– electrochemical gradient on the cell membrane, which is important for regulation of many cellular processes. However, a quantitative analysis of the interplay between numerous membrane transporters and channels in maintaining cell ionic homeostasis is still undeveloped. Here, we demonstrate a recently developed approach on how to predict cell ionic homeostasis dynamics when stopping the sodium pump in human lymphoid cells U937. The results demonstrate the reliability of the approach and provide the first quantitative description of unidirectional monovalent ion fluxes through the plasma membrane of an animal cell, considering all the main types of cation-coupled chloride cotransporters operating in a system with the sodium pump and electroconductive K+, Na+, and Cl– channels. The same approach was used to study ionic and water balance changes associated with regulatory volume decrease (RVD), a well-known cellular response underlying the adaptation of animal cells to a hypoosmolar environment. A computational analysis of cell as an electrochemical system demonstrates that RVD may happen without any changes in the properties of membrane transporters and channels due to time-dependent changes in electrochemical ion gradients. The proposed approach is applicable when studying truly active regulatory processes mediated by the intracellular signaling network. The developed software can be useful for calculation of the balance of the unidirectional fluxes of monovalent ions across the cell membrane of various cells under various conditions.
format article
author Valentina E. Yurinskaya
Alexey A. Vereninov
author_facet Valentina E. Yurinskaya
Alexey A. Vereninov
author_sort Valentina E. Yurinskaya
title Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease
title_short Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease
title_full Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease
title_fullStr Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease
title_full_unstemmed Cation-Chloride Cotransporters, Na/K Pump, and Channels in Cell Water and Ion Regulation: In silico and Experimental Studies of the U937 Cells Under Stopping the Pump and During Regulatory Volume Decrease
title_sort cation-chloride cotransporters, na/k pump, and channels in cell water and ion regulation: in silico and experimental studies of the u937 cells under stopping the pump and during regulatory volume decrease
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/ec9a35e7c6bf44c989e0cb734ba8e77a
work_keys_str_mv AT valentinaeyurinskaya cationchloridecotransportersnakpumpandchannelsincellwaterandionregulationinsilicoandexperimentalstudiesoftheu937cellsunderstoppingthepumpandduringregulatoryvolumedecrease
AT alexeyavereninov cationchloridecotransportersnakpumpandchannelsincellwaterandionregulationinsilicoandexperimentalstudiesoftheu937cellsunderstoppingthepumpandduringregulatoryvolumedecrease
_version_ 1718426700519309312