Mixed Convection Stagnation Point Flow of a Hybrid Nanofluid Past a Permeable Flat Plate with Radiation Effect

This article focuses on the stagnation point flow of hybrid nanofluid towards a flat plate. The cases when the buoyancy forces and the flow are in the opposite direction and the same direction are discussed. The effect of radiation and suction is also taken into account. The similarity transformatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siti Nur Alwani Salleh, Norfifah Bachok, Ioan Pop
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ecc66c0a97b947229dc42537f9334880
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This article focuses on the stagnation point flow of hybrid nanofluid towards a flat plate. The cases when the buoyancy forces and the flow are in the opposite direction and the same direction are discussed. The effect of radiation and suction is also taken into account. The similarity transformations are used to convert the partial differential equations into nonlinear ordinary differential equations. These equations are computed numerically via the bvp4c function in MATLAB software. A comparison with the previously published articles is carried out, where an outstanding agreement is observed. The dual solutions exist in the case of opposing flow <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>λ</mi><mo><</mo><mn>0</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the suction parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>></mo><mn>0.6688</mn></mrow></semantics></math></inline-formula>. Meanwhile, only unique solutions exist in the case of assisting flow <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>λ</mi><mo>></mo><mn>0</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The existence of dual solutions leads to stability analysis. From the analysis, the first solution is confirmed as a stable solution. Furthermore, the heat transmission rate increases, while the skin friction coefficient decreases as the radiation rate increases. An increase in the radiation rate from 0 (no radiation) to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.0</mn></mrow></semantics></math></inline-formula> increases the heat transmission rate by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.01</mn><mo>%</mo></mrow></semantics></math></inline-formula> for water, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.96</mn><mo>%</mo></mrow></semantics></math></inline-formula> for nanofluid, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.80</mn><mo>%</mo></mrow></semantics></math></inline-formula> for hybrid nanofluid. Finally, it is worth mentioning that the present study yields new and original results. This study has also not been done by other researchers, indicating its novelty.