The effect of sodium carboxymethyl starch with high degree of substitution on defecation.
Sodium carboxymethyl starch (CMS-Na), a kind of food additive with high degree of substitution, is also known as a prebiotic. The aim of this study was to determine the effect of CMS-Na on defecation. Constipated mouse model was prepared by loperamide. Normal rats were also used in the study. Short-...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ecc8658c2a6b4130b22158ac22b09299 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Sodium carboxymethyl starch (CMS-Na), a kind of food additive with high degree of substitution, is also known as a prebiotic. The aim of this study was to determine the effect of CMS-Na on defecation. Constipated mouse model was prepared by loperamide. Normal rats were also used in the study. Short-chain fatty acids in rat feces were detected by gas chromatography. The bacterial communities in rat feces were identified by 16S rDNA gene sequencing. 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase 1 (Tph1) were measured by ELISA. The results showed that CMS-Na increased the fecal granule counts and intestinal propulsion rate in constipated mice. The contents of water, acetic acid, propionic acid and n-butyrate in feces, Tph1 in colon and 5-HT in serum of rats were increased. In addition, CMS-Na shortened the colonic transport time in rats. The 16S rDNA gene sequencing results indicated that CMS-Na increased the relative abundance of Alloprevotella and decreased the proportion of Lactobacillus. However, the biodiversity of the normal intestinal flora was not altered. In conclusion, CMS-Na can promote defecation in constipated mice. The mechanism may be related to the regulation of Alloprevotella and Lactobacillus in colon, the increase of short-chain fatty acids, and the promotion of the synthesis of Tph1 and 5-HT. |
---|