Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations
Abstract Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ece2219aba824e04a7c747cf0ec901a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ece2219aba824e04a7c747cf0ec901a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ece2219aba824e04a7c747cf0ec901a52021-12-02T17:12:17ZInsights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations10.1038/s41598-021-92480-w2045-2322https://doaj.org/article/ece2219aba824e04a7c747cf0ec901a52021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92480-whttps://doaj.org/toc/2045-2322Abstract Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control the capability of SULT to bind large substrates. We employed molecular dynamics (MD) simulations and the recently developed approach of MD with excited normal modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on binding of the substrates estradiol and fulvestrant demonstrated that large conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-factor movements that could be sufficient to accommodate large substrates as fulvestrant. Such structural displacements detected by the MDeNM simulations in the presence of the co-factor suggest that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the utility of including MDeNM in protein–ligand interactions studies where major rearrangements are expected.Balint DudasDaniel TothDavid PerahiaArnaud B. NicotErika BalogMaria A. MitevaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Balint Dudas Daniel Toth David Perahia Arnaud B. Nicot Erika Balog Maria A. Miteva Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations |
description |
Abstract Sulfotransferases (SULTs) are phase II drug-metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to a substrate. It has been previously suggested that a considerable shift of SULT structure caused by PAPS binding could control the capability of SULT to bind large substrates. We employed molecular dynamics (MD) simulations and the recently developed approach of MD with excited normal modes (MDeNM) to elucidate molecular mechanisms guiding the recognition of diverse substrates and inhibitors by SULT1A1. MDeNM allowed exploring an extended conformational space of PAPS-bound SULT1A1, which has not been achieved up to now by using classical MD. The generated ensembles combined with docking of 132 SULT1A1 ligands shed new light on substrate and inhibitor binding mechanisms. Unexpectedly, our simulations and analyses on binding of the substrates estradiol and fulvestrant demonstrated that large conformational changes of the PAPS-bound SULT1A1 could occur independently of the co-factor movements that could be sufficient to accommodate large substrates as fulvestrant. Such structural displacements detected by the MDeNM simulations in the presence of the co-factor suggest that a wider range of drugs could be recognized by PAPS-bound SULT1A1 and highlight the utility of including MDeNM in protein–ligand interactions studies where major rearrangements are expected. |
format |
article |
author |
Balint Dudas Daniel Toth David Perahia Arnaud B. Nicot Erika Balog Maria A. Miteva |
author_facet |
Balint Dudas Daniel Toth David Perahia Arnaud B. Nicot Erika Balog Maria A. Miteva |
author_sort |
Balint Dudas |
title |
Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations |
title_short |
Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations |
title_full |
Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations |
title_fullStr |
Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations |
title_full_unstemmed |
Insights into the substrate binding mechanism of SULT1A1 through molecular dynamics with excited normal modes simulations |
title_sort |
insights into the substrate binding mechanism of sult1a1 through molecular dynamics with excited normal modes simulations |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ece2219aba824e04a7c747cf0ec901a5 |
work_keys_str_mv |
AT balintdudas insightsintothesubstratebindingmechanismofsult1a1throughmoleculardynamicswithexcitednormalmodessimulations AT danieltoth insightsintothesubstratebindingmechanismofsult1a1throughmoleculardynamicswithexcitednormalmodessimulations AT davidperahia insightsintothesubstratebindingmechanismofsult1a1throughmoleculardynamicswithexcitednormalmodessimulations AT arnaudbnicot insightsintothesubstratebindingmechanismofsult1a1throughmoleculardynamicswithexcitednormalmodessimulations AT erikabalog insightsintothesubstratebindingmechanismofsult1a1throughmoleculardynamicswithexcitednormalmodessimulations AT mariaamiteva insightsintothesubstratebindingmechanismofsult1a1throughmoleculardynamicswithexcitednormalmodessimulations |
_version_ |
1718381471482249216 |