Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis
The security of power systems and electrical grids can be affected by the stochastic nature of wind energy. Therefore, reliable techniques for load forecasting and planning must be developed. This paper presents a model for short-term regional wind power forecasting based on small datasets. The mode...
Guardado en:
Autores principales: | Weichao Dong, Hexu Sun, Jianxin Tan, Zheng Li, Jingxuan Zhang, Yu Yang Zhao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ecea42a3e20349f1a36dabc225abd7f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
por: Mingwei Wang, et al.
Publicado: (2020) -
Prediction of the Change Points in Stock Markets Using DAE-LSTM
por: Sanghyuk Yoo, et al.
Publicado: (2021) -
Wind Speed Prediction Using Hybrid 1D CNN and BLSTM Network
por: Abdulmajid Lawal, et al.
Publicado: (2021) -
Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting
por: Wen-Hui Lin, et al.
Publicado: (2021) -
Accuracy of wind speed predictability with heights using Recurrent Neural networks
por: Mohandes M., et al.
Publicado: (2021)