Short-term regional wind power forecasting for small datasets with input data correction, hybrid neural network, and error analysis
The security of power systems and electrical grids can be affected by the stochastic nature of wind energy. Therefore, reliable techniques for load forecasting and planning must be developed. This paper presents a model for short-term regional wind power forecasting based on small datasets. The mode...
Enregistré dans:
Auteurs principaux: | Weichao Dong, Hexu Sun, Jianxin Tan, Zheng Li, Jingxuan Zhang, Yu Yang Zhao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ecea42a3e20349f1a36dabc225abd7f2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Milling Tool Wear Prediction Method Based on Deep Learning Under Variable Working Conditions
par: Mingwei Wang, et autres
Publié: (2020) -
Prediction of the Change Points in Stock Markets Using DAE-LSTM
par: Sanghyuk Yoo, et autres
Publié: (2021) -
Wind Speed Prediction Using Hybrid 1D CNN and BLSTM Network
par: Abdulmajid Lawal, et autres
Publié: (2021) -
Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting
par: Wen-Hui Lin, et autres
Publié: (2021) -
Accuracy of wind speed predictability with heights using Recurrent Neural networks
par: Mohandes M., et autres
Publié: (2021)