Lithological information extraction and classification in hyperspectral remote sensing data using Backpropagation Neural Network.
The purposes are to solve the isomorphism encountered while processing hyperspectral remote sensing data and improve the accuracy of hyperspectral remote sensing data in extracting and classifying lithological information. Taking rocks as the research object, Backpropagation Neural Network (BPNN) is...
Guardado en:
Autores principales: | Zhengyang Wang, Shufang Tian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ecf15f30007a4ffca740a10980599bef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autonomous Learning Interactive Features for Hyperspectral Remotely Sensed Data
por: Ling Dai, et al.
Publicado: (2021) -
Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
por: Qianyi Li, et al.
Publicado: (2021) -
Decision Support System for Hyperspectral Remote-Sensing Data of Yellow River Estuary, China
por: Wang Ping, et al.
Publicado: (2021) -
Event-based backpropagation can compute exact gradients for spiking neural networks
por: Timo C. Wunderlich, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021)