Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering

Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry brea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mark P. Oxley, Maxim Ziatdinov, Ondrej Dyck, Andrew R. Lupini, Rama Vasudevan, Sergei V. Kalinin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/ecf1dba1c93343adbad24d4051791a72
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ecf1dba1c93343adbad24d4051791a72
record_format dspace
spelling oai:doaj.org-article:ecf1dba1c93343adbad24d4051791a722021-12-02T16:57:57ZProbing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering10.1038/s41524-021-00527-32057-3960https://doaj.org/article/ecf1dba1c93343adbad24d4051791a722021-05-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00527-3https://doaj.org/toc/2057-3960Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry breaking distortions. A critical bottleneck is the dearth of analytical tools that can reduce complex 4D-STEM data to physically relevant descriptors. We propose an approach for the systematic exploration of 4D-STEM data using rotationally invariant variational autoencoders (rrVAE), which disentangle the general rotation of the object from other latent representations. The implementation of purely rotational rrVAE is discussed as are applications to simulated data for graphene and zincblende structures. The rrVAE analysis of experimental 4D-STEM data of defects in graphene is illustrated and compared to the classical center-of-mass analysis. This approach is universal for probing symmetry-breaking phenomena in complex systems and can be implemented for a broad range of diffraction methods.Mark P. OxleyMaxim ZiatdinovOndrej DyckAndrew R. LupiniRama VasudevanSergei V. KalininNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-6 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Computer software
QA76.75-76.765
Mark P. Oxley
Maxim Ziatdinov
Ondrej Dyck
Andrew R. Lupini
Rama Vasudevan
Sergei V. Kalinin
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
description Abstract The 4D scanning transmission electron microscopy (STEM) method maps the structure and functionality of solids on the atomic scale, yielding information-rich data sets describing the interatomic electric and magnetic fields, structural and electronic order parameters, and other symmetry breaking distortions. A critical bottleneck is the dearth of analytical tools that can reduce complex 4D-STEM data to physically relevant descriptors. We propose an approach for the systematic exploration of 4D-STEM data using rotationally invariant variational autoencoders (rrVAE), which disentangle the general rotation of the object from other latent representations. The implementation of purely rotational rrVAE is discussed as are applications to simulated data for graphene and zincblende structures. The rrVAE analysis of experimental 4D-STEM data of defects in graphene is illustrated and compared to the classical center-of-mass analysis. This approach is universal for probing symmetry-breaking phenomena in complex systems and can be implemented for a broad range of diffraction methods.
format article
author Mark P. Oxley
Maxim Ziatdinov
Ondrej Dyck
Andrew R. Lupini
Rama Vasudevan
Sergei V. Kalinin
author_facet Mark P. Oxley
Maxim Ziatdinov
Ondrej Dyck
Andrew R. Lupini
Rama Vasudevan
Sergei V. Kalinin
author_sort Mark P. Oxley
title Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_short Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_full Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_fullStr Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_full_unstemmed Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
title_sort probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ecf1dba1c93343adbad24d4051791a72
work_keys_str_mv AT markpoxley probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT maximziatdinov probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT ondrejdyck probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT andrewrlupini probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT ramavasudevan probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
AT sergeivkalinin probingatomicscalesymmetrybreakingbyrotationallyinvariantmachinelearningofmultidimensionalelectronscattering
_version_ 1718382480786980864