Application of regularized regression to identify novel predictors of mortality in a cohort of hemodialysis patients
Abstract Cohort studies often provide a large array of data on study participants. The techniques of statistical learning can allow an efficient way to analyze large datasets in order to uncover previously unknown, clinically relevant predictors of morbidity or mortality. We applied a combination of...
Enregistré dans:
Auteurs principaux: | Stanislas Werfel, Georg Lorenz, Bernhard Haller, Roman Günthner, Julia Matschkal, Matthias C. Braunisch, Carolin Schaller, Peter Gundel, Stephan Kemmner, Salim S. Hayek, Christian Nusshag, Jochen Reiser, Philipp Moog, Uwe Heemann, Christoph Schmaderer |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ecf4578a224648ed822651d87b9aa1b4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
U-Shaped Association of the Heart Rate Variability Triangular Index and Mortality in Hemodialysis Patients With Atrial Fibrillation
par: Matthias C. Braunisch, et autres
Publié: (2021) -
Telomere shortening in patients on long-term hemodialysis
par: Yucheng Wang, et autres
Publié: (2021) -
Efficacy of Ombitasvir/Paritaprevir/Ritonavir plus Ribavirin in Treatment of Chronic Hepatitis C Patients with End Stage Renal Disease on Regular Hemodialysis
par: Naglaa El-Gendy, et autres
Publié: (2020) -
Hemodialysis international
Publié: (2000) -
The Predialysis Serum Sodium Level Modifies the Effect of Hemodialysis Frequency on Left-Ventricular Mass: The Frequent Hemodialysis Network Trials
par: Jochen G. Raimann, et autres
Publié: (2021)