α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.

α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Phuong Thi Mai Nguyen, Megan L Falsetta, Geelsu Hwang, Mireya Gonzalez-Begne, Hyun Koo
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ecfc625146fb4bffb99dffe06c088c6f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ecfc625146fb4bffb99dffe06c088c6f
record_format dspace
spelling oai:doaj.org-article:ecfc625146fb4bffb99dffe06c088c6f2021-11-25T05:55:11Zα-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.1932-620310.1371/journal.pone.0111312https://doaj.org/article/ecfc625146fb4bffb99dffe06c088c6f2014-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0111312https://doaj.org/toc/1932-6203α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.Phuong Thi Mai NguyenMegan L FalsettaGeelsu HwangMireya Gonzalez-BegneHyun KooPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 10, p e111312 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Phuong Thi Mai Nguyen
Megan L Falsetta
Geelsu Hwang
Mireya Gonzalez-Begne
Hyun Koo
α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.
description α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.
format article
author Phuong Thi Mai Nguyen
Megan L Falsetta
Geelsu Hwang
Mireya Gonzalez-Begne
Hyun Koo
author_facet Phuong Thi Mai Nguyen
Megan L Falsetta
Geelsu Hwang
Mireya Gonzalez-Begne
Hyun Koo
author_sort Phuong Thi Mai Nguyen
title α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.
title_short α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.
title_full α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.
title_fullStr α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.
title_full_unstemmed α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.
title_sort α-mangostin disrupts the development of streptococcus mutans biofilms and facilitates its mechanical removal.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/ecfc625146fb4bffb99dffe06c088c6f
work_keys_str_mv AT phuongthimainguyen amangostindisruptsthedevelopmentofstreptococcusmutansbiofilmsandfacilitatesitsmechanicalremoval
AT meganlfalsetta amangostindisruptsthedevelopmentofstreptococcusmutansbiofilmsandfacilitatesitsmechanicalremoval
AT geelsuhwang amangostindisruptsthedevelopmentofstreptococcusmutansbiofilmsandfacilitatesitsmechanicalremoval
AT mireyagonzalezbegne amangostindisruptsthedevelopmentofstreptococcusmutansbiofilmsandfacilitatesitsmechanicalremoval
AT hyunkoo amangostindisruptsthedevelopmentofstreptococcusmutansbiofilmsandfacilitatesitsmechanicalremoval
_version_ 1718414434620145664