Mendelian randomization analysis of the association between human blood cell traits and uterine polyps
Abstract Human blood cells (HBCs) play essential roles in multiple biological processes but their roles in development of uterine polyps are unknown. Here we implemented a Mendelian randomization (MR) analysis to investigate the effects of 36 HBC traits on endometrial polyps (EPs) and cervical polyp...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ed1ad2fc92dd46e4914a2d3c886a54e5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Human blood cells (HBCs) play essential roles in multiple biological processes but their roles in development of uterine polyps are unknown. Here we implemented a Mendelian randomization (MR) analysis to investigate the effects of 36 HBC traits on endometrial polyps (EPs) and cervical polyps (CPs). The random-effect inverse-variance weighted method was adopted as standard MR analysis and three additional MR methods (MR-Egger, weighted median, and MR-PRESSO) were used for sensitivity analyses. Genetic instruments of HBC traits was extracted from a large genome-wide association study of 173,480 individuals, while data for EPs and CPs were obtained from the UK Biobank. All samples were Europeans. Using genetic variants as instrumental variables, our study found that both eosinophil count (OR 0.85, 95% CI 0.79–0.93, P = 1.06 × 10−4) and eosinophil percentage of white cells (OR 0.84, 95% CI 0.77–0.91, P = 2.43 × 10−5) were associated with decreased risk of EPs. The results were robust in sensitivity analyses and no evidences of horizontal pleiotropy were observed. While we found no significant associations between HBC traits and CPs. Our findings suggested eosinophils might play important roles in the pathogenesis of EPs. Besides, out study provided novel insight into detecting uterine polyps biomarkers using genetic epidemiology approaches. |
---|