VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics

Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lucas Seninge, Ioannis Anastopoulos, Hongxu Ding, Joshua Stuart
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity.