VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ed3aa6f7d98748388fc0f47ff767569f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ed3aa6f7d98748388fc0f47ff767569f2021-12-02T17:37:31ZVEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics10.1038/s41467-021-26017-02041-1723https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26017-0https://doaj.org/toc/2041-1723Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity.Lucas SeningeIoannis AnastopoulosHongxu DingJoshua StuartNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Lucas Seninge Ioannis Anastopoulos Hongxu Ding Joshua Stuart VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
description |
Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity. |
format |
article |
author |
Lucas Seninge Ioannis Anastopoulos Hongxu Ding Joshua Stuart |
author_facet |
Lucas Seninge Ioannis Anastopoulos Hongxu Ding Joshua Stuart |
author_sort |
Lucas Seninge |
title |
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
title_short |
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
title_full |
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
title_fullStr |
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
title_full_unstemmed |
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
title_sort |
vega is an interpretable generative model for inferring biological network activity in single-cell transcriptomics |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f |
work_keys_str_mv |
AT lucasseninge vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics AT ioannisanastopoulos vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics AT hongxuding vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics AT joshuastuart vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics |
_version_ |
1718379915739398144 |