VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics

Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lucas Seninge, Ioannis Anastopoulos, Hongxu Ding, Joshua Stuart
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ed3aa6f7d98748388fc0f47ff767569f
record_format dspace
spelling oai:doaj.org-article:ed3aa6f7d98748388fc0f47ff767569f2021-12-02T17:37:31ZVEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics10.1038/s41467-021-26017-02041-1723https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26017-0https://doaj.org/toc/2041-1723Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity.Lucas SeningeIoannis AnastopoulosHongxu DingJoshua StuartNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Lucas Seninge
Ioannis Anastopoulos
Hongxu Ding
Joshua Stuart
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
description Developing interpretable models is a major challenge in single cell deep learning. Here we show that the VEGA variational autoencoder model, whose decoder wiring mirrors gene modules, can provide direct interpretability to the latent space further enabling the inference of biological module activity.
format article
author Lucas Seninge
Ioannis Anastopoulos
Hongxu Ding
Joshua Stuart
author_facet Lucas Seninge
Ioannis Anastopoulos
Hongxu Ding
Joshua Stuart
author_sort Lucas Seninge
title VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
title_short VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
title_full VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
title_fullStr VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
title_full_unstemmed VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
title_sort vega is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/ed3aa6f7d98748388fc0f47ff767569f
work_keys_str_mv AT lucasseninge vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics
AT ioannisanastopoulos vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics
AT hongxuding vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics
AT joshuastuart vegaisaninterpretablegenerativemodelforinferringbiologicalnetworkactivityinsinglecelltranscriptomics
_version_ 1718379915739398144