A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan)
Abstract Earthquakes and heavy rainfalls are the two leading causes of landslides around the world. Since they often occur across large areas, landslide detection requires rapid and reliable automatic detection approaches. Currently, deep learning (DL) approaches, especially different convolutional...
Guardado en:
Autores principales: | Omid Ghorbanzadeh, Alessandro Crivellari, Pedram Ghamisi, Hejar Shahabi, Thomas Blaschke |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ed41ca3c6abe431c9ad297276161f66d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
por: Hejar Shahabi, et al.
Publicado: (2021) -
Second-order ResU-Net for automatic MRI brain tumor segmentation
por: Ning Sheng, et al.
Publicado: (2021) -
Landslide Detection Mapping Employing CNN, ResNet, and DenseNet in the Three Gorges Reservoir, China
por: Tong Liu, et al.
Publicado: (2021) -
Light-Convolution Dense Selection U-Net (LDS U-Net) for Ultrasound Lateral Bony Feature Segmentation
por: Sunetra Banerjee, et al.
Publicado: (2021) -
AWEU-Net: An Attention-Aware Weight Excitation U-Net for Lung Nodule Segmentation
por: Syeda Furruka Banu, et al.
Publicado: (2021)