Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging
Abstract Using medical images to evaluate disease severity and change over time is a routine and important task in clinical decision making. Grading systems are often used, but are unreliable as domain experts disagree on disease severity category thresholds. These discrete categories also do not re...
Guardado en:
Autores principales: | Matthew D. Li, Ken Chang, Ben Bearce, Connie Y. Chang, Ambrose J. Huang, J. Peter Campbell, James M. Brown, Praveer Singh, Katharina V. Hoebel, Deniz Erdoğmuş, Stratis Ioannidis, William E. Palmer, Michael F. Chiang, Jayashree Kalpathy-Cramer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ed582b22521f42aea98d635072169785 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Continuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus
por: Siddharth R. Krishnan, et al.
Publicado: (2020) -
Wearable sensor derived decompensation index for continuous remote monitoring of COVID-19 diagnosed patients
por: Dylan M. Richards, et al.
Publicado: (2021) -
Digital health interventions in palliative care: a systematic meta-review
por: Anne M. Finucane, et al.
Publicado: (2021) -
Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches
por: Brinnae Bent, et al.
Publicado: (2021) -
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
por: Yechan Mun, et al.
Publicado: (2021)