Contact Dynamics: Legendrian and Lagrangian Submanifolds

We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Oğul Esen, Manuel Lainz Valcázar, Manuel de León, Juan Carlos Marrero
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/eda3043d3612424c80d47ab12514132e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eda3043d3612424c80d47ab12514132e
record_format dspace
spelling oai:doaj.org-article:eda3043d3612424c80d47ab12514132e2021-11-11T18:15:53ZContact Dynamics: Legendrian and Lagrangian Submanifolds10.3390/math92127042227-7390https://doaj.org/article/eda3043d3612424c80d47ab12514132e2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2704https://doaj.org/toc/2227-7390We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics.Oğul EsenManuel Lainz ValcázarManuel de LeónJuan Carlos MarreroMDPI AGarticleTulczyjew’s triplecontact dynamicsevolution contact dynamicsLegendrian submanifoldLagrangian submanifoldMathematicsQA1-939ENMathematics, Vol 9, Iss 2704, p 2704 (2021)
institution DOAJ
collection DOAJ
language EN
topic Tulczyjew’s triple
contact dynamics
evolution contact dynamics
Legendrian submanifold
Lagrangian submanifold
Mathematics
QA1-939
spellingShingle Tulczyjew’s triple
contact dynamics
evolution contact dynamics
Legendrian submanifold
Lagrangian submanifold
Mathematics
QA1-939
Oğul Esen
Manuel Lainz Valcázar
Manuel de León
Juan Carlos Marrero
Contact Dynamics: Legendrian and Lagrangian Submanifolds
description We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics.
format article
author Oğul Esen
Manuel Lainz Valcázar
Manuel de León
Juan Carlos Marrero
author_facet Oğul Esen
Manuel Lainz Valcázar
Manuel de León
Juan Carlos Marrero
author_sort Oğul Esen
title Contact Dynamics: Legendrian and Lagrangian Submanifolds
title_short Contact Dynamics: Legendrian and Lagrangian Submanifolds
title_full Contact Dynamics: Legendrian and Lagrangian Submanifolds
title_fullStr Contact Dynamics: Legendrian and Lagrangian Submanifolds
title_full_unstemmed Contact Dynamics: Legendrian and Lagrangian Submanifolds
title_sort contact dynamics: legendrian and lagrangian submanifolds
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/eda3043d3612424c80d47ab12514132e
work_keys_str_mv AT ogulesen contactdynamicslegendrianandlagrangiansubmanifolds
AT manuellainzvalcazar contactdynamicslegendrianandlagrangiansubmanifolds
AT manueldeleon contactdynamicslegendrianandlagrangiansubmanifolds
AT juancarlosmarrero contactdynamicslegendrianandlagrangiansubmanifolds
_version_ 1718431917751140352