Contact Dynamics: Legendrian and Lagrangian Submanifolds
We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eda3043d3612424c80d47ab12514132e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eda3043d3612424c80d47ab12514132e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eda3043d3612424c80d47ab12514132e2021-11-11T18:15:53ZContact Dynamics: Legendrian and Lagrangian Submanifolds10.3390/math92127042227-7390https://doaj.org/article/eda3043d3612424c80d47ab12514132e2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2704https://doaj.org/toc/2227-7390We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics.Oğul EsenManuel Lainz ValcázarManuel de LeónJuan Carlos MarreroMDPI AGarticleTulczyjew’s triplecontact dynamicsevolution contact dynamicsLegendrian submanifoldLagrangian submanifoldMathematicsQA1-939ENMathematics, Vol 9, Iss 2704, p 2704 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Tulczyjew’s triple contact dynamics evolution contact dynamics Legendrian submanifold Lagrangian submanifold Mathematics QA1-939 |
spellingShingle |
Tulczyjew’s triple contact dynamics evolution contact dynamics Legendrian submanifold Lagrangian submanifold Mathematics QA1-939 Oğul Esen Manuel Lainz Valcázar Manuel de León Juan Carlos Marrero Contact Dynamics: Legendrian and Lagrangian Submanifolds |
description |
We are proposing Tulczyjew’s triple for contact dynamics. The most important ingredients of the triple, namely symplectic diffeomorphisms, special symplectic manifolds, and Morse families, are generalized to the contact framework. These geometries permit us to determine so-called generating family (obtained by merging a special contact manifold and a Morse family) for a Legendrian submanifold. Contact Hamiltonian and Lagrangian Dynamics are recast as Legendrian submanifolds of the tangent contact manifold. In this picture, the Legendre transformation is determined to be a passage between two different generators of the same Legendrian submanifold. A variant of contact Tulczyjew’s triple is constructed for evolution contact dynamics. |
format |
article |
author |
Oğul Esen Manuel Lainz Valcázar Manuel de León Juan Carlos Marrero |
author_facet |
Oğul Esen Manuel Lainz Valcázar Manuel de León Juan Carlos Marrero |
author_sort |
Oğul Esen |
title |
Contact Dynamics: Legendrian and Lagrangian Submanifolds |
title_short |
Contact Dynamics: Legendrian and Lagrangian Submanifolds |
title_full |
Contact Dynamics: Legendrian and Lagrangian Submanifolds |
title_fullStr |
Contact Dynamics: Legendrian and Lagrangian Submanifolds |
title_full_unstemmed |
Contact Dynamics: Legendrian and Lagrangian Submanifolds |
title_sort |
contact dynamics: legendrian and lagrangian submanifolds |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/eda3043d3612424c80d47ab12514132e |
work_keys_str_mv |
AT ogulesen contactdynamicslegendrianandlagrangiansubmanifolds AT manuellainzvalcazar contactdynamicslegendrianandlagrangiansubmanifolds AT manueldeleon contactdynamicslegendrianandlagrangiansubmanifolds AT juancarlosmarrero contactdynamicslegendrianandlagrangiansubmanifolds |
_version_ |
1718431917751140352 |