A spike-timing pattern based neural network model for the study of memory dynamics.
It is well accepted that the brain's computation relies on spatiotemporal activity of neural networks. In particular, there is growing evidence of the importance of continuously and precisely timed spiking activity. Therefore, it is important to characterize memory states in terms of spike-timi...
Guardado en:
Autores principales: | Jian K Liu, Zhen-Su She |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eda4b2be721448eabb421e2281471c18 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Fangxin Liu, et al.
Publicado: (2021) -
STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM
por: Van-Tinh Nguyen, et al.
Publicado: (2021) -
Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
por: Lars Buesing, et al.
Publicado: (2011) -
Complementarity of spike- and rate-based dynamics of neural systems.
por: M T Wilson, et al.
Publicado: (2012) -
Symmetry perception with spiking neural networks
por: Jonathan K. George, et al.
Publicado: (2021)