Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>

ABSTRACT Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Melissa D. Barnes, Magdalena A. Taracila, Joseph D. Rutter, Christopher R. Bethel, Ioannis Galdadas, Andrea M. Hujer, Emilia Caselli, Fabio Prati, John P. Dekker, Krisztina M. Papp-Wallace, Shozeb Haider, Robert A. Bonomo
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://doaj.org/article/edb8dbd7a6454ff080c0150b5085a0a8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:edb8dbd7a6454ff080c0150b5085a0a8
record_format dspace
spelling oai:doaj.org-article:edb8dbd7a6454ff080c0150b5085a0a82021-11-15T15:52:19ZDeciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>10.1128/mBio.02085-182150-7511https://doaj.org/article/edb8dbd7a6454ff080c0150b5085a0a82018-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02085-18https://doaj.org/toc/2150-7511ABSTRACT Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations.Melissa D. BarnesMagdalena A. TaracilaJoseph D. RutterChristopher R. BethelIoannis GaldadasAndrea M. HujerEmilia CaselliFabio PratiJohn P. DekkerKrisztina M. Papp-WallaceShozeb HaiderRobert A. BonomoAmerican Society for MicrobiologyarticleAmpCPDC-3antibiotic resistancebeta-lactambeta-lactamaseceftolozaneMicrobiologyQR1-502ENmBio, Vol 9, Iss 6 (2018)
institution DOAJ
collection DOAJ
language EN
topic AmpC
PDC-3
antibiotic resistance
beta-lactam
beta-lactamase
ceftolozane
Microbiology
QR1-502
spellingShingle AmpC
PDC-3
antibiotic resistance
beta-lactam
beta-lactamase
ceftolozane
Microbiology
QR1-502
Melissa D. Barnes
Magdalena A. Taracila
Joseph D. Rutter
Christopher R. Bethel
Ioannis Galdadas
Andrea M. Hujer
Emilia Caselli
Fabio Prati
John P. Dekker
Krisztina M. Papp-Wallace
Shozeb Haider
Robert A. Bonomo
Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>
description ABSTRACT Pseudomonas aeruginosa produces a class C β-lactamase (e.g., PDC-3) that robustly hydrolyzes early generation cephalosporins often at the diffusion limit; therefore, bacteria possessing these β-lactamases are resistant to many β-lactam antibiotics. In response to this significant clinical threat, ceftolozane, a 3′ aminopyrazolium cephalosporin, was developed. Combined with tazobactam, ceftolozane promised to be effective against multidrug-resistant P. aeruginosa. Alarmingly, Ω-loop variants of the PDC β-lactamase (V213A, G216R, E221K, E221G, and Y223H) were identified in ceftolozane/tazobactam-resistant P. aeruginosa clinical isolates. Herein, we demonstrate that the Escherichia coli strain expressing the E221K variant of PDC-3 had the highest minimum inhibitory concentrations (MICs) against a panel of β-lactam antibiotics, including ceftolozane and ceftazidime, a cephalosporin that differs in structure largely in the R2 side chain. The kcat values of the E221K variant for both substrates were equivalent, whereas the Km for ceftolozane (341 ± 64 µM) was higher than that for ceftazidime (174 ± 20 µM). Timed mass spectrometry, thermal stability, and equilibrium unfolding studies revealed key mechanistic insights. Enhanced sampling molecular dynamics simulations identified conformational changes in the E221K variant Ω-loop, where a hidden pocket adjacent to the catalytic site opens and stabilizes ceftolozane for efficient hydrolysis. Encouragingly, the diazabicyclooctane β-lactamase inhibitor avibactam restored susceptibility to ceftolozane and ceftazidime in cells producing the E221K variant. In addition, a boronic acid transition state inhibitor, LP-06, lowered the ceftolozane and ceftazidime MICs by 8-fold for the E221K-expressing strain. Understanding these structural changes in evolutionarily selected variants is critical toward designing effective β-lactam/β-lactamase inhibitor therapies for P. aeruginosa infections. IMPORTANCE The presence of β-lactamases (e.g., PDC-3) that have naturally evolved and acquired the ability to break down β-lactam antibiotics (e.g., ceftazidime and ceftolozane) leads to highly resistant and potentially lethal Pseudomonas aeruginosa infections. We show that wild-type PDC-3 β-lactamase forms an acyl enzyme complex with ceftazidime, but it cannot accommodate the structurally similar ceftolozane that has a longer R2 side chain with increased basicity. A single amino acid substitution from a glutamate to a lysine at position 221 in PDC-3 (E221K) causes the tyrosine residue at 223 to adopt a new position poised for efficient hydrolysis of both cephalosporins. The importance of the mechanism of action of the E221K variant, in particular, is underscored by its evolutionary recurrences in multiple bacterial species. Understanding the biochemical and molecular basis for resistance is key to designing effective therapies and developing new β-lactam/β-lactamase inhibitor combinations.
format article
author Melissa D. Barnes
Magdalena A. Taracila
Joseph D. Rutter
Christopher R. Bethel
Ioannis Galdadas
Andrea M. Hujer
Emilia Caselli
Fabio Prati
John P. Dekker
Krisztina M. Papp-Wallace
Shozeb Haider
Robert A. Bonomo
author_facet Melissa D. Barnes
Magdalena A. Taracila
Joseph D. Rutter
Christopher R. Bethel
Ioannis Galdadas
Andrea M. Hujer
Emilia Caselli
Fabio Prati
John P. Dekker
Krisztina M. Papp-Wallace
Shozeb Haider
Robert A. Bonomo
author_sort Melissa D. Barnes
title Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>
title_short Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>
title_full Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>
title_fullStr Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>
title_full_unstemmed Deciphering the Evolution of Cephalosporin Resistance to Ceftolozane-Tazobactam in <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content>
title_sort deciphering the evolution of cephalosporin resistance to ceftolozane-tazobactam in <named-content content-type="genus-species">pseudomonas aeruginosa</named-content>
publisher American Society for Microbiology
publishDate 2018
url https://doaj.org/article/edb8dbd7a6454ff080c0150b5085a0a8
work_keys_str_mv AT melissadbarnes decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT magdalenaataracila decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT josephdrutter decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT christopherrbethel decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT ioannisgaldadas decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT andreamhujer decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT emiliacaselli decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT fabioprati decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT johnpdekker decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT krisztinampappwallace decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT shozebhaider decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
AT robertabonomo decipheringtheevolutionofcephalosporinresistancetoceftolozanetazobactaminnamedcontentcontenttypegenusspeciespseudomonasaeruginosanamedcontent
_version_ 1718427313641619456