Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems

ABSTRACT Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonell...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joseph J. Gillespie, Isabelle Q. H. Phan, Holger Scheib, Sandhya Subramanian, Thomas E. Edwards, Stephanie S. Lehman, Hanna Piitulainen, M. Sayeedur Rahman, Kristen E. Rennoll-Bankert, Bart L. Staker, Suvi Taira, Robin Stacy, Peter J. Myler, Abdu F. Azad, Arto T. Pulliainen
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2015
Materias:
Acceso en línea:https://doaj.org/article/eddba446b9474c58833850283358d59e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eddba446b9474c58833850283358d59e
record_format dspace
spelling oai:doaj.org-article:eddba446b9474c58833850283358d59e2021-11-15T15:41:23ZStructural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems10.1128/mBio.01867-152150-7511https://doaj.org/article/eddba446b9474c58833850283358d59e2015-12-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01867-15https://doaj.org/toc/2150-7511ABSTRACT Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. IMPORTANCE Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.Joseph J. GillespieIsabelle Q. H. PhanHolger ScheibSandhya SubramanianThomas E. EdwardsStephanie S. LehmanHanna PiitulainenM. Sayeedur RahmanKristen E. Rennoll-BankertBart L. StakerSuvi TairaRobin StacyPeter J. MylerAbdu F. AzadArto T. PulliainenAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 6, Iss 6 (2015)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Joseph J. Gillespie
Isabelle Q. H. Phan
Holger Scheib
Sandhya Subramanian
Thomas E. Edwards
Stephanie S. Lehman
Hanna Piitulainen
M. Sayeedur Rahman
Kristen E. Rennoll-Bankert
Bart L. Staker
Suvi Taira
Robin Stacy
Peter J. Myler
Abdu F. Azad
Arto T. Pulliainen
Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
description ABSTRACT Prokaryotes use type IV secretion systems (T4SSs) to translocate substrates (e.g., nucleoprotein, DNA, and protein) and/or elaborate surface structures (i.e., pili or adhesins). Bacterial genomes may encode multiple T4SSs, e.g., there are three functionally divergent T4SSs in some Bartonella species (vir, vbh, and trw). In a unique case, most rickettsial species encode a T4SS (rvh) enriched with gene duplication. Within single genomes, the evolutionary and functional implications of cross-system interchangeability of analogous T4SS protein components remains poorly understood. To lend insight into cross-system interchangeability, we analyzed the VirB8 family of T4SS channel proteins. Crystal structures of three VirB8 and two TrwG Bartonella proteins revealed highly conserved C-terminal periplasmic domain folds and dimerization interfaces, despite tremendous sequence divergence. This implies remarkable structural constraints for VirB8 components in the assembly of a functional T4SS. VirB8/TrwG heterodimers, determined via bacterial two-hybrid assays and molecular modeling, indicate that differential expression of trw and vir systems is the likely barrier to VirB8-TrwG interchangeability. We also determined the crystal structure of Rickettsia typhi RvhB8-II and modeled its coexpressed divergent paralog RvhB8-I. Remarkably, while RvhB8-I dimerizes and is structurally similar to other VirB8 proteins, the RvhB8-II dimer interface deviates substantially from other VirB8 structures, potentially preventing RvhB8-I/RvhB8-II heterodimerization. For the rvh T4SS, the evolution of divergent VirB8 paralogs implies a functional diversification that is unknown in other T4SSs. Collectively, our data identify two different constraints (spatiotemporal for Bartonella trw and vir T4SSs and structural for rvh T4SSs) that mediate the functionality of multiple divergent T4SSs within a single bacterium. IMPORTANCE Assembly of multiprotein complexes at the right time and at the right cellular location is a fundamentally important task for any organism. In this respect, bacteria that express multiple analogous type IV secretion systems (T4SSs), each composed of around 12 different components, face an overwhelming complexity. Our work here presents the first structural investigation on factors regulating the maintenance of multiple T4SSs within a single bacterium. The structural data imply that the T4SS-expressing bacteria rely on two strategies to prevent cross-system interchangeability: (i) tight temporal regulation of expression or (ii) rapid diversification of the T4SS components. T4SSs are ideal drug targets provided that no analogous counterparts are known from eukaryotes. Drugs targeting the barriers to cross-system interchangeability (i.e., regulators) could dysregulate the structural and functional independence of discrete systems, potentially creating interference that prevents their efficient coordination throughout bacterial infection.
format article
author Joseph J. Gillespie
Isabelle Q. H. Phan
Holger Scheib
Sandhya Subramanian
Thomas E. Edwards
Stephanie S. Lehman
Hanna Piitulainen
M. Sayeedur Rahman
Kristen E. Rennoll-Bankert
Bart L. Staker
Suvi Taira
Robin Stacy
Peter J. Myler
Abdu F. Azad
Arto T. Pulliainen
author_facet Joseph J. Gillespie
Isabelle Q. H. Phan
Holger Scheib
Sandhya Subramanian
Thomas E. Edwards
Stephanie S. Lehman
Hanna Piitulainen
M. Sayeedur Rahman
Kristen E. Rennoll-Bankert
Bart L. Staker
Suvi Taira
Robin Stacy
Peter J. Myler
Abdu F. Azad
Arto T. Pulliainen
author_sort Joseph J. Gillespie
title Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
title_short Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
title_full Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
title_fullStr Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
title_full_unstemmed Structural Insight into How Bacteria Prevent Interference between Multiple Divergent Type IV Secretion Systems
title_sort structural insight into how bacteria prevent interference between multiple divergent type iv secretion systems
publisher American Society for Microbiology
publishDate 2015
url https://doaj.org/article/eddba446b9474c58833850283358d59e
work_keys_str_mv AT josephjgillespie structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT isabelleqhphan structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT holgerscheib structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT sandhyasubramanian structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT thomaseedwards structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT stephanieslehman structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT hannapiitulainen structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT msayeedurrahman structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT kristenerennollbankert structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT bartlstaker structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT suvitaira structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT robinstacy structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT peterjmyler structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT abdufazad structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
AT artotpulliainen structuralinsightintohowbacteriapreventinterferencebetweenmultipledivergenttypeivsecretionsystems
_version_ 1718427738473234432