Interactive Part Segmentation Using Edge Images
As more and more fields utilize deep learning, there is an increasing demand to make suitable training data for each field. The existing interactive object segmentation models can easily make the mask label data because these can accurately segment the area of the target object through user interact...
Enregistré dans:
Auteurs principaux: | Ju-Young Oh, Jung-Min Park |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/edf8693ba1f94c4dbe6b530abba1b393 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Global Context and Enhanced Feature Guided Residual Refinement Network for 3D Cardiovascular Image Segmentation
par: Jingjing Liu, et autres
Publié: (2021) -
Model-Agnostic Post-Processing Based on Recursive Feedback for Medical Image Segmentation
par: Jaeho Kim, et autres
Publié: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
par: Bekhzod Olimov, et autres
Publié: (2021) -
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
par: Wei Wang, et autres
Publié: (2021) -
Health Vigilance for Medical Imaging Diagnostic Optimization: Automated segmentation of COVID-19 lung infection from CT images
par: Mohamed Chala, et autres
Publié: (2021)