Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3
Abstract Noise exposures causing only transient threshold shifts can destroy auditory-nerve synapses without damaging hair cells. Here, we asked whether virally mediated neurotrophin3 (NT3) overexpression can repair this damage. CBA/CaJ mice at 6 wks were injected unilaterally with adeno-associated...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee0860e21d1648468a10153d8c2a20c3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ee0860e21d1648468a10153d8c2a20c3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ee0860e21d1648468a10153d8c2a20c32021-12-02T16:08:05ZProtection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT310.1038/s41598-019-51724-62045-2322https://doaj.org/article/ee0860e21d1648468a10153d8c2a20c32019-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-51724-6https://doaj.org/toc/2045-2322Abstract Noise exposures causing only transient threshold shifts can destroy auditory-nerve synapses without damaging hair cells. Here, we asked whether virally mediated neurotrophin3 (NT3) overexpression can repair this damage. CBA/CaJ mice at 6 wks were injected unilaterally with adeno-associated virus (AAV) containing either NT3 or GFP genes, via the posterior semicircular canal, 3 wks prior to, or 5 hrs after, noise exposure. Controls included exposed animals receiving vehicle only, and unexposed animals receiving virus. Thresholds were measured 2 wks post-exposure, just before cochleas were harvested for histological analysis. In separate virus-injected animals, unexposed cochleas were extracted for qRT-PCR. The GFP reporter showed that inner hair cells (IHCs) were transfected throughout the cochlea, and outer hair cells mainly in the apex. qRT-PCR showed 4- to 10-fold overexpression of NT3 from 1–21 days post-injection, and 1.7-fold overexpression at 40 days. AAV-NT3 delivered prior to noise exposure produced a dose-dependent reduction of synaptopathy, with nearly complete rescue at some cochlear locations. In unexposed ears, NT3 overexpression did not affect thresholds, however GFP overexpression caused IHC loss. In exposed ears, NT3 overexpression increased permanent threshold shifts. Thus, although NT3 overexpression can minimize noise-induced synaptic damage, the forced overexpression may be harmful to hair cells themselves during cochlear overstimulation.Ken HashimotoTyler T. HickmanJun SuzukiLingchao JiDavid C. KohrmanGabriel CorfasM. Charles LibermanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-12 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ken Hashimoto Tyler T. Hickman Jun Suzuki Lingchao Ji David C. Kohrman Gabriel Corfas M. Charles Liberman Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3 |
description |
Abstract Noise exposures causing only transient threshold shifts can destroy auditory-nerve synapses without damaging hair cells. Here, we asked whether virally mediated neurotrophin3 (NT3) overexpression can repair this damage. CBA/CaJ mice at 6 wks were injected unilaterally with adeno-associated virus (AAV) containing either NT3 or GFP genes, via the posterior semicircular canal, 3 wks prior to, or 5 hrs after, noise exposure. Controls included exposed animals receiving vehicle only, and unexposed animals receiving virus. Thresholds were measured 2 wks post-exposure, just before cochleas were harvested for histological analysis. In separate virus-injected animals, unexposed cochleas were extracted for qRT-PCR. The GFP reporter showed that inner hair cells (IHCs) were transfected throughout the cochlea, and outer hair cells mainly in the apex. qRT-PCR showed 4- to 10-fold overexpression of NT3 from 1–21 days post-injection, and 1.7-fold overexpression at 40 days. AAV-NT3 delivered prior to noise exposure produced a dose-dependent reduction of synaptopathy, with nearly complete rescue at some cochlear locations. In unexposed ears, NT3 overexpression did not affect thresholds, however GFP overexpression caused IHC loss. In exposed ears, NT3 overexpression increased permanent threshold shifts. Thus, although NT3 overexpression can minimize noise-induced synaptic damage, the forced overexpression may be harmful to hair cells themselves during cochlear overstimulation. |
format |
article |
author |
Ken Hashimoto Tyler T. Hickman Jun Suzuki Lingchao Ji David C. Kohrman Gabriel Corfas M. Charles Liberman |
author_facet |
Ken Hashimoto Tyler T. Hickman Jun Suzuki Lingchao Ji David C. Kohrman Gabriel Corfas M. Charles Liberman |
author_sort |
Ken Hashimoto |
title |
Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3 |
title_short |
Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3 |
title_full |
Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3 |
title_fullStr |
Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3 |
title_full_unstemmed |
Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3 |
title_sort |
protection from noise-induced cochlear synaptopathy by virally mediated overexpression of nt3 |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ee0860e21d1648468a10153d8c2a20c3 |
work_keys_str_mv |
AT kenhashimoto protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 AT tylerthickman protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 AT junsuzuki protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 AT lingchaoji protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 AT davidckohrman protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 AT gabrielcorfas protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 AT mcharlesliberman protectionfromnoiseinducedcochlearsynaptopathybyvirallymediatedoverexpressionofnt3 |
_version_ |
1718384628291600384 |