Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis
ABSTRACT Orders Oceanospirillales and Pseudomonadales play important roles in various ecosystems as the keystone taxa of microbiomes. However, the two orders present a close evolutionary relationship, which might have caused taxonomic misinterpretation and resulted in an incorrect understanding of t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee29a217462d487583612234c977adca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ee29a217462d487583612234c977adca |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ee29a217462d487583612234c977adca2021-12-02T19:47:33ZReclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis10.1128/mSystems.00543-202379-5077https://doaj.org/article/ee29a217462d487583612234c977adca2020-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00543-20https://doaj.org/toc/2379-5077ABSTRACT Orders Oceanospirillales and Pseudomonadales play important roles in various ecosystems as the keystone taxa of microbiomes. However, the two orders present a close evolutionary relationship, which might have caused taxonomic misinterpretation and resulted in an incorrect understanding of their evolutionary history. In this study, first, we used the 16S rRNA gene sequences of 2,049 species of Gammaproteobacteria to build a phylogenetic tree, which demonstrated that reports regarding the evolutionary relationship of orders Cellvibrionales, Oceanospirillales, and Pseudomonadales based on a single conserved gene with a poor resolution have been conflicting; in particular, the major families Moraxellaceae and Pseudomonadaceae of order Pseudomonadales were separated from orders Cellvibrionales and Oceanospirillales. Subsequently, we constructed the bac120 trees of all representative reference genomes of class Gammaproteobacteria based on 120 ubiquitous single-copy proteins from bacteria and a phylogenomic tree based on the 119 core genes of 257 reference genomes obtained from orders Cellvibrionales, Oceanospirillales, and Pseudomonadales to cross validate and infer their intrinsic evolutionary relationships. These results indicated that two novel orders, Moraxellales ord. nov. and Kangiellales ord. nov., and three novel families, Marinobacteraceae fam. nov., Perlucidibacaceae fam. nov., and Zooshikellaceae fam. nov., should be proposed. Additionally, orders Cellvibrionales and Oceanospirillales were merged into the order Pseudomonadales except for families Moraxellaceae and Kangiellaceae in class Gammaproteobacteria, which currently includes 18 families. Our work sheds some light on the evolutionary history of class Gammaproteobacteria, which could facilitate the detection and taxonomic analysis of natural communities. IMPORTANCE The orders Cellvibrionales, Oceanospirillales, and Pseudomonadales, as three major orders of the largest bacterial class, Gammaproteobacteria, play important roles in various ecosystems as the keystone taxa of microbiomes, but their evolutionary relationship is currently polyphyletic and chaotic. Here, we constructed a bac120 tree and core-genome tree and calculated the amino acid identity (AAI) value to explore their intrinsic evolutionary history. In this study, we proposed two novel orders and three novel families. This evolution study vastly reconstructed the taxonomic framework of class Gammaproteobacteria and could provide a more distinct perspective on global distribution and evolutionary patterns of these environmental microorganisms.Hu LiaoXiaolan LinYuqian LiMingming QuYun TianAmerican Society for Microbiologyarticleclass Gammaproteobacteriacore genomeMoraxellales ord. nov.Kangiellales ord. nov.Marinobacteraceae fam. nov.Zooshikellaceae fam. nov.MicrobiologyQR1-502ENmSystems, Vol 5, Iss 5 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
class Gammaproteobacteria core genome Moraxellales ord. nov. Kangiellales ord. nov. Marinobacteraceae fam. nov. Zooshikellaceae fam. nov. Microbiology QR1-502 |
spellingShingle |
class Gammaproteobacteria core genome Moraxellales ord. nov. Kangiellales ord. nov. Marinobacteraceae fam. nov. Zooshikellaceae fam. nov. Microbiology QR1-502 Hu Liao Xiaolan Lin Yuqian Li Mingming Qu Yun Tian Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis |
description |
ABSTRACT Orders Oceanospirillales and Pseudomonadales play important roles in various ecosystems as the keystone taxa of microbiomes. However, the two orders present a close evolutionary relationship, which might have caused taxonomic misinterpretation and resulted in an incorrect understanding of their evolutionary history. In this study, first, we used the 16S rRNA gene sequences of 2,049 species of Gammaproteobacteria to build a phylogenetic tree, which demonstrated that reports regarding the evolutionary relationship of orders Cellvibrionales, Oceanospirillales, and Pseudomonadales based on a single conserved gene with a poor resolution have been conflicting; in particular, the major families Moraxellaceae and Pseudomonadaceae of order Pseudomonadales were separated from orders Cellvibrionales and Oceanospirillales. Subsequently, we constructed the bac120 trees of all representative reference genomes of class Gammaproteobacteria based on 120 ubiquitous single-copy proteins from bacteria and a phylogenomic tree based on the 119 core genes of 257 reference genomes obtained from orders Cellvibrionales, Oceanospirillales, and Pseudomonadales to cross validate and infer their intrinsic evolutionary relationships. These results indicated that two novel orders, Moraxellales ord. nov. and Kangiellales ord. nov., and three novel families, Marinobacteraceae fam. nov., Perlucidibacaceae fam. nov., and Zooshikellaceae fam. nov., should be proposed. Additionally, orders Cellvibrionales and Oceanospirillales were merged into the order Pseudomonadales except for families Moraxellaceae and Kangiellaceae in class Gammaproteobacteria, which currently includes 18 families. Our work sheds some light on the evolutionary history of class Gammaproteobacteria, which could facilitate the detection and taxonomic analysis of natural communities. IMPORTANCE The orders Cellvibrionales, Oceanospirillales, and Pseudomonadales, as three major orders of the largest bacterial class, Gammaproteobacteria, play important roles in various ecosystems as the keystone taxa of microbiomes, but their evolutionary relationship is currently polyphyletic and chaotic. Here, we constructed a bac120 tree and core-genome tree and calculated the amino acid identity (AAI) value to explore their intrinsic evolutionary history. In this study, we proposed two novel orders and three novel families. This evolution study vastly reconstructed the taxonomic framework of class Gammaproteobacteria and could provide a more distinct perspective on global distribution and evolutionary patterns of these environmental microorganisms. |
format |
article |
author |
Hu Liao Xiaolan Lin Yuqian Li Mingming Qu Yun Tian |
author_facet |
Hu Liao Xiaolan Lin Yuqian Li Mingming Qu Yun Tian |
author_sort |
Hu Liao |
title |
Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis |
title_short |
Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis |
title_full |
Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis |
title_fullStr |
Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis |
title_full_unstemmed |
Reclassification of the Taxonomic Framework of Orders <italic toggle="yes">Cellvibrionales, Oceanospirillales, Pseudomonadales</italic>, and <italic toggle="yes">Alteromonadales</italic> in Class <italic toggle="yes">Gammaproteobacteria</italic> through Phylogenomic Tree Analysis |
title_sort |
reclassification of the taxonomic framework of orders <italic toggle="yes">cellvibrionales, oceanospirillales, pseudomonadales</italic>, and <italic toggle="yes">alteromonadales</italic> in class <italic toggle="yes">gammaproteobacteria</italic> through phylogenomic tree analysis |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/ee29a217462d487583612234c977adca |
work_keys_str_mv |
AT huliao reclassificationofthetaxonomicframeworkofordersitalictoggleyescellvibrionalesoceanospirillalespseudomonadalesitalicanditalictoggleyesalteromonadalesitalicinclassitalictoggleyesgammaproteobacteriaitalicthroughphylogenomictreeanalysis AT xiaolanlin reclassificationofthetaxonomicframeworkofordersitalictoggleyescellvibrionalesoceanospirillalespseudomonadalesitalicanditalictoggleyesalteromonadalesitalicinclassitalictoggleyesgammaproteobacteriaitalicthroughphylogenomictreeanalysis AT yuqianli reclassificationofthetaxonomicframeworkofordersitalictoggleyescellvibrionalesoceanospirillalespseudomonadalesitalicanditalictoggleyesalteromonadalesitalicinclassitalictoggleyesgammaproteobacteriaitalicthroughphylogenomictreeanalysis AT mingmingqu reclassificationofthetaxonomicframeworkofordersitalictoggleyescellvibrionalesoceanospirillalespseudomonadalesitalicanditalictoggleyesalteromonadalesitalicinclassitalictoggleyesgammaproteobacteriaitalicthroughphylogenomictreeanalysis AT yuntian reclassificationofthetaxonomicframeworkofordersitalictoggleyescellvibrionalesoceanospirillalespseudomonadalesitalicanditalictoggleyesalteromonadalesitalicinclassitalictoggleyesgammaproteobacteriaitalicthroughphylogenomictreeanalysis |
_version_ |
1718375999529287680 |