Synchronized Data Collection for Human Group Recognition
It is commonplace for people to perform various kinds of activities in groups. The recognition of human groups is of importance in many applications including crowd evacuation, teamwork coordination, and advertising. Existing group recognition approaches require snapshots of human trajectories, whic...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee2a0a9ff6ca4a98ba24dcf097595a62 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ee2a0a9ff6ca4a98ba24dcf097595a62 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ee2a0a9ff6ca4a98ba24dcf097595a622021-11-11T19:06:26ZSynchronized Data Collection for Human Group Recognition10.3390/s212170941424-8220https://doaj.org/article/ee2a0a9ff6ca4a98ba24dcf097595a622021-10-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7094https://doaj.org/toc/1424-8220It is commonplace for people to perform various kinds of activities in groups. The recognition of human groups is of importance in many applications including crowd evacuation, teamwork coordination, and advertising. Existing group recognition approaches require snapshots of human trajectories, which is often impossible in the reality due to different data collection start time and frequency, and the inherent time deviations of devices. This study proposes an approach to synchronize the data of people for group recognition. All people’s trajectory data are aligned by using data interpolating. The optimal interpolating points are computed based on our proposed error function. Moreover, the time deviations among devices are estimated and eliminated by message passing. A real-life data set is used to validate the effectiveness of the proposed approach. The results show that 97.7% accuracy of group recognition can be achieved. The approach proposed to deal with time deviations was also proven to lead to better performance compared to that of the existing approaches.Weiping ZhuLin XuYijie TangRong XieMDPI AGarticlegroup recognitionsynchronizationtrajectory interpolationmessage passingChemical technologyTP1-1185ENSensors, Vol 21, Iss 7094, p 7094 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
group recognition synchronization trajectory interpolation message passing Chemical technology TP1-1185 |
spellingShingle |
group recognition synchronization trajectory interpolation message passing Chemical technology TP1-1185 Weiping Zhu Lin Xu Yijie Tang Rong Xie Synchronized Data Collection for Human Group Recognition |
description |
It is commonplace for people to perform various kinds of activities in groups. The recognition of human groups is of importance in many applications including crowd evacuation, teamwork coordination, and advertising. Existing group recognition approaches require snapshots of human trajectories, which is often impossible in the reality due to different data collection start time and frequency, and the inherent time deviations of devices. This study proposes an approach to synchronize the data of people for group recognition. All people’s trajectory data are aligned by using data interpolating. The optimal interpolating points are computed based on our proposed error function. Moreover, the time deviations among devices are estimated and eliminated by message passing. A real-life data set is used to validate the effectiveness of the proposed approach. The results show that 97.7% accuracy of group recognition can be achieved. The approach proposed to deal with time deviations was also proven to lead to better performance compared to that of the existing approaches. |
format |
article |
author |
Weiping Zhu Lin Xu Yijie Tang Rong Xie |
author_facet |
Weiping Zhu Lin Xu Yijie Tang Rong Xie |
author_sort |
Weiping Zhu |
title |
Synchronized Data Collection for Human Group Recognition |
title_short |
Synchronized Data Collection for Human Group Recognition |
title_full |
Synchronized Data Collection for Human Group Recognition |
title_fullStr |
Synchronized Data Collection for Human Group Recognition |
title_full_unstemmed |
Synchronized Data Collection for Human Group Recognition |
title_sort |
synchronized data collection for human group recognition |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/ee2a0a9ff6ca4a98ba24dcf097595a62 |
work_keys_str_mv |
AT weipingzhu synchronizeddatacollectionforhumangrouprecognition AT linxu synchronizeddatacollectionforhumangrouprecognition AT yijietang synchronizeddatacollectionforhumangrouprecognition AT rongxie synchronizeddatacollectionforhumangrouprecognition |
_version_ |
1718431619955556352 |