Machine Learning Techniques for Parkinson’s Disease Detection using Wearables during a Timed-up-and-Go-Test
In this paper, the classification models for Idiopathic Parkinson's syndrome (iPS) detection through timed-up-and-go test performed on iPS-patients are given. The models are based on the supervised learning. The data are extracted via Myo gesture armband worn on two hands. The corresponding mod...
Guardado en:
Autores principales: | Hossein Tabatabaei Seyed Amir, Pedrosa David, Eggers Carsten, Wullstein Max, Kleinholdermann Urs, Fischer Patrick, Sohrabi Keywan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee3ed0d612dc4f4894c6e4ec4ab07546 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Detection and Classification of Cough Events Based on Deep Learning
por: Hossein Tabatabaei Seyed Amir, et al.
Publicado: (2020) -
A Study on the Possible Diagnosis of Parkinson’s Disease on the Basis of Facial Image Analysis
por: Jacek Jakubowski, et al.
Publicado: (2021) -
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
por: Kowsalya Thiagarajan, et al.
Publicado: (2021) - Parkinson's disease
-
Levodopa in the treatment of Parkinson’s disease: an old drug still going strong
por: Werner Poewe, et al.
Publicado: (2010)