Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning

The use of Raman spectroscopy for pathogen identification is hampered by the weak Raman signal and phenotypic diversity of bacterial cells. Here the authors generate an extensive dataset of bacterial Raman spectra and apply deep learning to identify common bacterial pathogens and predict antibiotic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Sing Ho, Neal Jean, Catherine A. Hogan, Lena Blackmon, Stefanie S. Jeffrey, Mark Holodniy, Niaz Banaei, Amr A. E. Saleh, Stefano Ermon, Jennifer Dionne
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ee4336f25b654cc5b76c1a698f533e71
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The use of Raman spectroscopy for pathogen identification is hampered by the weak Raman signal and phenotypic diversity of bacterial cells. Here the authors generate an extensive dataset of bacterial Raman spectra and apply deep learning to identify common bacterial pathogens and predict antibiotic treatment from noisy Raman spectra.