Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning
The use of Raman spectroscopy for pathogen identification is hampered by the weak Raman signal and phenotypic diversity of bacterial cells. Here the authors generate an extensive dataset of bacterial Raman spectra and apply deep learning to identify common bacterial pathogens and predict antibiotic...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee4336f25b654cc5b76c1a698f533e71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ee4336f25b654cc5b76c1a698f533e71 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ee4336f25b654cc5b76c1a698f533e712021-12-02T15:35:14ZRapid identification of pathogenic bacteria using Raman spectroscopy and deep learning10.1038/s41467-019-12898-92041-1723https://doaj.org/article/ee4336f25b654cc5b76c1a698f533e712019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12898-9https://doaj.org/toc/2041-1723The use of Raman spectroscopy for pathogen identification is hampered by the weak Raman signal and phenotypic diversity of bacterial cells. Here the authors generate an extensive dataset of bacterial Raman spectra and apply deep learning to identify common bacterial pathogens and predict antibiotic treatment from noisy Raman spectra.Chi-Sing HoNeal JeanCatherine A. HoganLena BlackmonStefanie S. JeffreyMark HolodniyNiaz BanaeiAmr A. E. SalehStefano ErmonJennifer DionneNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-8 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Chi-Sing Ho Neal Jean Catherine A. Hogan Lena Blackmon Stefanie S. Jeffrey Mark Holodniy Niaz Banaei Amr A. E. Saleh Stefano Ermon Jennifer Dionne Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning |
description |
The use of Raman spectroscopy for pathogen identification is hampered by the weak Raman signal and phenotypic diversity of bacterial cells. Here the authors generate an extensive dataset of bacterial Raman spectra and apply deep learning to identify common bacterial pathogens and predict antibiotic treatment from noisy Raman spectra. |
format |
article |
author |
Chi-Sing Ho Neal Jean Catherine A. Hogan Lena Blackmon Stefanie S. Jeffrey Mark Holodniy Niaz Banaei Amr A. E. Saleh Stefano Ermon Jennifer Dionne |
author_facet |
Chi-Sing Ho Neal Jean Catherine A. Hogan Lena Blackmon Stefanie S. Jeffrey Mark Holodniy Niaz Banaei Amr A. E. Saleh Stefano Ermon Jennifer Dionne |
author_sort |
Chi-Sing Ho |
title |
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning |
title_short |
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning |
title_full |
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning |
title_fullStr |
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning |
title_full_unstemmed |
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning |
title_sort |
rapid identification of pathogenic bacteria using raman spectroscopy and deep learning |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/ee4336f25b654cc5b76c1a698f533e71 |
work_keys_str_mv |
AT chisingho rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT nealjean rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT catherineahogan rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT lenablackmon rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT stefaniesjeffrey rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT markholodniy rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT niazbanaei rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT amraesaleh rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT stefanoermon rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning AT jenniferdionne rapididentificationofpathogenicbacteriausingramanspectroscopyanddeeplearning |
_version_ |
1718386631934738432 |