Influence of number of individuals and observations per individual on a model of community structure.

Social network analysis is increasingly applied to understand animal groups. However, it is rarely feasible to observe every interaction among all individuals in natural populations. Studies have assessed how missing information affects estimates of individual network positions, but less attention h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Julia Sunga, Quinn M R Webber, Hugh G Broders
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ee57713f443f443baa69bef2080d747e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ee57713f443f443baa69bef2080d747e
record_format dspace
spelling oai:doaj.org-article:ee57713f443f443baa69bef2080d747e2021-12-02T20:10:32ZInfluence of number of individuals and observations per individual on a model of community structure.1932-620310.1371/journal.pone.0252471https://doaj.org/article/ee57713f443f443baa69bef2080d747e2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0252471https://doaj.org/toc/1932-6203Social network analysis is increasingly applied to understand animal groups. However, it is rarely feasible to observe every interaction among all individuals in natural populations. Studies have assessed how missing information affects estimates of individual network positions, but less attention has been paid to metrics that characterize overall network structure such as modularity, clustering coefficient, and density. In cases such as groups displaying fission-fusion dynamics, where subgroups break apart and rejoin in changing conformations, missing information may affect estimates of global network structure differently than in groups with distinctly separated communities due to the influence single individuals can have on the connectivity of the network. Using a bat maternity group showing fission-fusion dynamics, we quantify the effect of missing data on global network measures including community detection. In our system, estimating the number of communities was less reliable than detecting community structure. Further, reliably assorting individual bats into communities required fewer individuals and fewer observations per individual than to estimate the number of communities. Specifically, our metrics of global network structure (i.e., graph density, clustering coefficient, Rcom) approached the 'real' values with increasing numbers of observations per individual and, as the number of individuals included increased, the variance in these estimates decreased. Similar to previous studies, we recommend that more observations per individual should be prioritized over including more individuals when resources are limited. We recommend caution when making conclusions about animal social networks when a substantial number of individuals or observations are missing, and when possible, suggest subsampling large datasets to observe how estimates are influenced by sampling intensity. Our study serves as an example of the reliability, or lack thereof, of global network measures with missing information, but further work is needed to determine how estimates will vary with different data collection methods, network structures, and sampling periods.Julia SungaQuinn M R WebberHugh G BrodersPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0252471 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Julia Sunga
Quinn M R Webber
Hugh G Broders
Influence of number of individuals and observations per individual on a model of community structure.
description Social network analysis is increasingly applied to understand animal groups. However, it is rarely feasible to observe every interaction among all individuals in natural populations. Studies have assessed how missing information affects estimates of individual network positions, but less attention has been paid to metrics that characterize overall network structure such as modularity, clustering coefficient, and density. In cases such as groups displaying fission-fusion dynamics, where subgroups break apart and rejoin in changing conformations, missing information may affect estimates of global network structure differently than in groups with distinctly separated communities due to the influence single individuals can have on the connectivity of the network. Using a bat maternity group showing fission-fusion dynamics, we quantify the effect of missing data on global network measures including community detection. In our system, estimating the number of communities was less reliable than detecting community structure. Further, reliably assorting individual bats into communities required fewer individuals and fewer observations per individual than to estimate the number of communities. Specifically, our metrics of global network structure (i.e., graph density, clustering coefficient, Rcom) approached the 'real' values with increasing numbers of observations per individual and, as the number of individuals included increased, the variance in these estimates decreased. Similar to previous studies, we recommend that more observations per individual should be prioritized over including more individuals when resources are limited. We recommend caution when making conclusions about animal social networks when a substantial number of individuals or observations are missing, and when possible, suggest subsampling large datasets to observe how estimates are influenced by sampling intensity. Our study serves as an example of the reliability, or lack thereof, of global network measures with missing information, but further work is needed to determine how estimates will vary with different data collection methods, network structures, and sampling periods.
format article
author Julia Sunga
Quinn M R Webber
Hugh G Broders
author_facet Julia Sunga
Quinn M R Webber
Hugh G Broders
author_sort Julia Sunga
title Influence of number of individuals and observations per individual on a model of community structure.
title_short Influence of number of individuals and observations per individual on a model of community structure.
title_full Influence of number of individuals and observations per individual on a model of community structure.
title_fullStr Influence of number of individuals and observations per individual on a model of community structure.
title_full_unstemmed Influence of number of individuals and observations per individual on a model of community structure.
title_sort influence of number of individuals and observations per individual on a model of community structure.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/ee57713f443f443baa69bef2080d747e
work_keys_str_mv AT juliasunga influenceofnumberofindividualsandobservationsperindividualonamodelofcommunitystructure
AT quinnmrwebber influenceofnumberofindividualsandobservationsperindividualonamodelofcommunitystructure
AT hughgbroders influenceofnumberofindividualsandobservationsperindividualonamodelofcommunitystructure
_version_ 1718375036055715840