Statistical methods for analysis of single-cell RNA-sequencing data
Single-cell RNA-sequencing (scRNA-seq) is a recent high-throughput genomic technology used to study the expression dynamics of genes at single-cell level. Analyzing the scRNA-seq data in presence of biological confounding factors including dropout events is a challenging task. Thus, this article pre...
Guardado en:
Autores principales: | Samarendra Das, Ph.D., Shesh N. Rai, Ph.D. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee7f54bcc86d434994791725df11b911 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Distribution of clones among hosts for the lizard malaria parasite Plasmodium mexicanum
por: Allison T. Neal
Publicado: (2021) -
Non-technological innovations in Chilean agricultural firms: what motivates the decision to innovate and the propensity of innovation?
por: Fuentes,Rodrigo A, et al.
Publicado: (2015) -
Identifying factors associated with the hospital readmission rate among patients with major depressive disorder
por: Sharareh Parami, et al.
Publicado: (2021) -
Meteorological Factors and Swine Erysipelas Transmission in Southern China
por: Hong-Yu Qin, et al.
Publicado: (2020) -
The zero-truncated discrete transmuted generalized inverse Weibull distribution and its applications
por: Atchanut Rattanalertnusorn, et al.
Publicado: (2021)