Rockburst Interpretation by a Data-Driven Approach: A Comparative Study
Accurately evaluating rockburst intensity has attracted much attention in these recent years, as it can guide the design of engineering in deep underground conditions and avoid injury to people. In this study, a new ensemble classifier combining a random forest classifier (RF) and beetle antennae se...
Guardado en:
Autores principales: | Yuantian Sun, Guichen Li, Sen Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee80cccec679496b970b2cd23a24d5e5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on Rockburst Prediction Classification Based on GA-XGB Model
por: Xuebin Xie, et al.
Publicado: (2021) -
Rockburst Precursors and the Dynamic Failure Mechanism of the Deep Tunnel: A Review
por: Yulong Chen, et al.
Publicado: (2021) -
Special issue: Informatics & data-driven medicine
por: Ivan Izonin, et al.
Publicado: (2021) -
An Improved Controlled Random Search Method
por: Vasileios Charilogis, et al.
Publicado: (2021) -
An Intelligent Rockburst Prediction Model Based on Scorecard Methodology
por: Honglei Wang, et al.
Publicado: (2021)