Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism

Lizhi Fu,1 Fenfen Li,1 Antje Bruckbauer,2 Qiang Cao,1 Xin Cui,1 Rui Wu,1 Hang Shi,1 Bingzhong Xue,1 Michael B Zemel21Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, 2NuSirt Biopharma Inc., Nashville, TN, USA Purpose: Leucine activates SIRT1/AMP-activated p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fu L, Li F, Bruckbauer A, Cao Q, Cui X, Wu R, Shi H, Xue B, Zemel MB
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/ee87c9ea13064cacbd8a326c3eb4d5c6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Lizhi Fu,1 Fenfen Li,1 Antje Bruckbauer,2 Qiang Cao,1 Xin Cui,1 Rui Wu,1 Hang Shi,1 Bingzhong Xue,1 Michael B Zemel21Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, 2NuSirt Biopharma Inc., Nashville, TN, USA Purpose: Leucine activates SIRT1/AMP-activated protein kinase (AMPK) signaling and markedly potentiates the effects of other sirtuin and AMPK activators on insulin signaling and lipid metabolism. Phosphodiesterase 5 inhibition increases nitric oxide–cGMP signaling, which in turn exhibits a positive feedback loop with both SIRT1 and AMPK, thus amplifying peroxisome proliferator-activated receptor γ co-activator α (PGC1α)-mediated effects. Methods: We evaluated potential synergy between leucine and PDE5i on insulin sensitivity and lipid metabolism in vitro and in diet-induced obese (DIO) mice. Results: Leucine (0.5 mM) exhibited significant synergy with subtherapeutic doses (0.1–10 nM) of PDE5-inhibitors (sildenafil and icariin) on fat oxidation, nitric oxide production, and mitochondrial biogenesis in hepatocytes, adipocytes, and myotubes. Effects on insulin sensitivity, glycemic control, and lipid metabolism were then assessed in DIO-mice. DIO-mice exhibited fasting and postprandial hyperglycemia, insulin resistance, and hepatic steatosis, which were not affected by the addition of leucine (24 g/kg diet). However, the combination of leucine and a subtherapeutic dose of icariin (25 mg/kg diet) for 6 weeks reduced fasting glucose (38%, P<0.002), insulin (37%, P<0.05), area under the glucose tolerance curve (20%, P<0.01), and fully restored glucose response to exogenous insulin challenge. The combination also inhibited hepatic lipogenesis, stimulated hepatic and muscle fatty acid oxidation, suppressed hepatic inflammation, and reversed high-fat diet-induced steatosis. Conclusion: These robust improvements in insulin sensitivity, glycemic control, and lipid metabolism indicate therapeutic potential for leucine–PDE5 inhibitor combinations. Keywords: AMPK, diabetes, icariin, PDE5, sildenafil, SIRT1, steatosis