Learning, memory, and the role of neural network architecture.
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both a...
Guardado en:
Autores principales: | Ann M Hermundstad, Kevin S Brown, Danielle S Bassett, Jean M Carlson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee8ce64ee4c044f4a62b0be947a4809d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks
por: Jannik Luboeinski, et al.
Publicado: (2021) -
Dendritic normalisation improves learning in sparsely connected artificial neural networks.
por: Alex D Bird, et al.
Publicado: (2021) -
Counterfactual choice and learning in a neural network centered on human lateral frontopolar cortex.
por: Erie D Boorman, et al.
Publicado: (2011) -
Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network.
por: Zhengqiao Zhao, et al.
Publicado: (2021) -
CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation.
por: Tariq Daouda, et al.
Publicado: (2021)