Learning, memory, and the role of neural network architecture.
The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both a...
Enregistré dans:
Auteurs principaux: | Ann M Hermundstad, Kevin S Brown, Danielle S Bassett, Jean M Carlson |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2011
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ee8ce64ee4c044f4a62b0be947a4809d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks
par: Jannik Luboeinski, et autres
Publié: (2021) -
Dendritic normalisation improves learning in sparsely connected artificial neural networks.
par: Alex D Bird, et autres
Publié: (2021) -
Counterfactual choice and learning in a neural network centered on human lateral frontopolar cortex.
par: Erie D Boorman, et autres
Publié: (2011) -
Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network.
par: Zhengqiao Zhao, et autres
Publié: (2021) -
CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation.
par: Tariq Daouda, et autres
Publié: (2021)