Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin in the multiphoton regime and biological relevance
How does chemistry scale in complexity to unerringly direct biological functions? Nass Kovacs et al. have shown that bacteriorhodopsin undergoes structural changes tantalizingly similar to the expected pathway even under excessive excitation. Is the protein structure so highly evolved that it direct...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ee99e130dfa442c4b1b664414387b56f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | How does chemistry scale in complexity to unerringly direct biological functions? Nass Kovacs et al. have shown that bacteriorhodopsin undergoes structural changes tantalizingly similar to the expected pathway even under excessive excitation. Is the protein structure so highly evolved that it directs all deposited energy into the designed function? |
---|