PARROT is a flexible recurrent neural network framework for analysis of large protein datasets
The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine lea...
Guardado en:
Autores principales: | Daniel Griffith, Alex S Holehouse |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eea3c378655a42d68e392633fc89bbb7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GapMind: Automated Annotation of Amino Acid Biosynthesis
por: Morgan N. Price, et al.
Publicado: (2020) -
Development of a bioinformatics platform for analysis of quantitative transcriptomics and proteomics data: the OMnalysis
por: Punit Tyagi, et al.
Publicado: (2021) -
A Reference Viral Database (RVDB) To Enhance Bioinformatics Analysis of High-Throughput Sequencing for Novel Virus Detection
por: Norman Goodacre, et al.
Publicado: (2018) -
Current Trends and Future Directions of Large Scale Image and Video Annotation: Observations From Four Years of BIIGLE 2.0
por: Martin Zurowietz, et al.
Publicado: (2021) -
High-Throughput Recovery and Characterization of Metagenome-Derived Glycoside Hydrolase-Containing Clones as a Resource for Biocatalyst Development
por: Zachary Armstrong, et al.
Publicado: (2019)