Mono-(2-ethylhexyl) phthalate directly alters the expression of Leydig cell genes and CYP17 lyase activity in cultured rat fetal testis.
Exposure to phthalates in utero alters fetal rat testis gene expression and testosterone production, but much remains to be done to understand the mechanisms underlying the direct action of phthalate within the fetal testis. We aimed to investigate the direct mechanisms of action of mono-(2-ethylhex...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eea6dfa2745f42329468c6f20b6b2a9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Exposure to phthalates in utero alters fetal rat testis gene expression and testosterone production, but much remains to be done to understand the mechanisms underlying the direct action of phthalate within the fetal testis. We aimed to investigate the direct mechanisms of action of mono-(2-ethylhexyl) phthalate (MEHP) on the rat fetal testis, focusing on Leydig cell steroidogenesis in particular. We used an in vitro system based on the culture for three days, with or without MEHP, of rat fetal testes obtained at 14.5 days post-coitum.Exposure to MEHP led to a dose-dependent decrease in testosterone production. Moreover, the production of 5 alpha-dihydrotestosterone (5α-DHT) (-68%) and androstenedione (-54%) was also inhibited by 10 µM MEHP, whereas 17 alpha-hydroxyprogesterone (17α-OHP) production was found to increase (+41%). Testosterone synthesis was rescued by the addition of androstenedione but not by any of the other precursors used. Thus, the hormone data suggested that steroidogenesis was blocked at the level of the 17,20 lyase activity of the P450c17 enzyme (CYP17), converting 17α-OHP to androstenedione. The subsequent gene expression and protein levels supported this hypothesis. In addition to Cyp17a1, microarray analysis showed that several other genes important for testes development were affected by MEHP. These genes included those encoding insulin-like factor 3 (INSL3), which is involved in controlling testicular descent, and Inha, which encodes the alpha subunit of inhibin B.These findings indicate that under in vitro conditions known to support normal differentiation of the fetal rat testis, the exposure to MEHP directly inhibits several important Leydig cell factors involved in testis function and that the Cyp17a1 gene is a specific target to MEHP explaining the MEHP-induced suppression of steroidogenesis observed. |
---|