Machine Learning Reveals Missing Edges and Putative Interaction Mechanisms in Microbial Ecosystem Networks
ABSTRACT Microbes affect each other’s growth in multiple, often elusive, ways. The ensuing interdependencies form complex networks, believed to reflect taxonomic composition as well as community-level functional properties and dynamics. The elucidation of these networks is often pursued by measuring...
Guardado en:
Autores principales: | Demetrius DiMucci, Mark Kon, Daniel Segrè |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eea9e7e7c3ba4e66ba4e2fcd9c5a3aba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recipient-Biased Competition for an Intracellularly Generated Cross-Fed Nutrient Is Required for Coexistence of Microbial Mutualists
por: Alexandra L. McCully, et al.
Publicado: (2017) -
Designing Metabolic Division of Labor in Microbial Communities
por: Meghan Thommes, et al.
Publicado: (2019) -
Bacterial Quorum Sensing and Microbial Community Interactions
por: Rhea G. Abisado, et al.
Publicado: (2018) -
Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
por: St. Elmo Wilken, et al.
Publicado: (2021) -
Adaptive Evolution of Phosphorus Metabolism in <italic toggle="yes">Prochlorococcus</italic>
por: John R. Casey, et al.
Publicado: (2016)