Machine Learning Reveals Missing Edges and Putative Interaction Mechanisms in Microbial Ecosystem Networks
ABSTRACT Microbes affect each other’s growth in multiple, often elusive, ways. The ensuing interdependencies form complex networks, believed to reflect taxonomic composition as well as community-level functional properties and dynamics. The elucidation of these networks is often pursued by measuring...
Enregistré dans:
Auteurs principaux: | Demetrius DiMucci, Mark Kon, Daniel Segrè |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Society for Microbiology
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eea9e7e7c3ba4e66ba4e2fcd9c5a3aba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Recipient-Biased Competition for an Intracellularly Generated Cross-Fed Nutrient Is Required for Coexistence of Microbial Mutualists
par: Alexandra L. McCully, et autres
Publié: (2017) -
Designing Metabolic Division of Labor in Microbial Communities
par: Meghan Thommes, et autres
Publié: (2019) -
Bacterial Quorum Sensing and Microbial Community Interactions
par: Rhea G. Abisado, et autres
Publié: (2018) -
Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus
par: St. Elmo Wilken, et autres
Publié: (2021) -
Adaptive Evolution of Phosphorus Metabolism in <italic toggle="yes">Prochlorococcus</italic>
par: John R. Casey, et autres
Publié: (2016)