A characterization of real holomorphic chains and applications in representing homology classes by algebraic cycles

We show that a 2k-current T on a complex manifold is a real holomorphic k-chain if and only if T is locally real rectifiable, d-closed and has ℋ2k-locally finite support. This result is applied to study homology classes represented by algebraic cycles.

Guardado en:
Detalles Bibliográficos
Autores principales: Teh Jyh-Haur, Yang Chin-Jui
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/eeb09b5cedc04205b30b2116620532fe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We show that a 2k-current T on a complex manifold is a real holomorphic k-chain if and only if T is locally real rectifiable, d-closed and has ℋ2k-locally finite support. This result is applied to study homology classes represented by algebraic cycles.