A characterization of real holomorphic chains and applications in representing homology classes by algebraic cycles
We show that a 2k-current T on a complex manifold is a real holomorphic k-chain if and only if T is locally real rectifiable, d-closed and has ℋ2k-locally finite support. This result is applied to study homology classes represented by algebraic cycles.
Guardado en:
Autores principales: | Teh Jyh-Haur, Yang Chin-Jui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eeb09b5cedc04205b30b2116620532fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real rectifiable currents, holomorphic chains and algebraic cycles
por: Teh Jyh-Haur, et al.
Publicado: (2021) -
Regularization of closed positive currents and intersection theory
por: Méo Michel
Publicado: (2017) -
Pseudo-holomorphic curves: A very quick overview
por: Oliveira Gonçalo
Publicado: (2020) -
Kobayashi—Hitchin correspondence for twisted vector bundles
por: Perego Arvid
Publicado: (2021) -
Hodge-Deligne polynomials of character varieties of free abelian groups
por: Florentino Carlos, et al.
Publicado: (2021)