Annotation Tool and Urban Dataset for 3D Point Cloud Semantic Segmentation
Accurate semantic segmentation of unstructured 3D point clouds requires large amount of annotated training data for deep learning. However, there is currently no free specialized software available that can efficiently annotate large 3D point clouds. We fill this gap by introducing PC-Annotate - a p...
Guardado en:
Autores principales: | Muhammad Ibrahim, Naveed Akhtar, Michael Wise, Ajmal Mian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eeb33091a49249d7a9b4542ec567b750 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
por: Soyeong Kim, et al.
Publicado: (2021) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
por: Genping Zhao, et al.
Publicado: (2021) -
A Coarse-to-Fine Approach for Rock Bolt Detection From 3D Point Clouds
por: Sarp Saydam, et al.
Publicado: (2021) -
Forest Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds
por: Sean Krisanski, et al.
Publicado: (2021) -
Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework
por: Anh Vu Vo, et al.
Publicado: (2021)