Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst
Renewable hydrogen production from water will require understanding and improving the oxygen evolution reaction (OER) on catalyst surfaces. Here, authors report α-Li2IrO3 to transform into a hydrated birnessite phase under OER conditions that exhibits enhanced OER performances and durabilities.
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eeb987e42b514712875aa7f209562b31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Renewable hydrogen production from water will require understanding and improving the oxygen evolution reaction (OER) on catalyst surfaces. Here, authors report α-Li2IrO3 to transform into a hydrated birnessite phase under OER conditions that exhibits enhanced OER performances and durabilities. |
---|